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Modeling the dynamics of global monopoles
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A thin wall approximation is exploited to describe a global monopole coupled to gravity. The core is
modeled by de Sitter space, its boundary by a thin wall with a constant energy density, and its exterior by the
asymptotic Schwarzschild solution with negative gravitational massM and solid angle deficit,DV/4p
58pGh2, whereh is the symmetry-breaking scale. The deficit angle equals 4p whenh51/A8pG[M p . We
find that ~1! if h,M p , there exists a unique globally static nonsingular solution with a well-defined mass,
M0,0. M0 provides a lower bound onM . If M0,M,0, the solution oscillates. There are no inflating
solutions in this symmetry-breaking regime.~2! If h>M p , nonsingular solutions with an inflating core and an
asymptotically cosmological exterior will exist for allM,0. ~3! If h is not too large, there exists a finite range
of values ofM where a noninflating monopole will also exist. These solutions appear to be metastable towards
inflation. If M is positive, all solutions are singular. We provide a detailed description of the configuration
space of the model for each point in the space of parameters (h,M ) and trace the wall trajectories on both the
interior and the exterior spacetimes. Our results support the proposal that topological defects can undergo
inflation. @S0556-2821~98!04216-7#

PACS number~s!: 98.80.Cq, 04.25.2g, 11.27.1d
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I. INTRODUCTION

Phase transitions occurring in the early universe can g
rise to topological defects of various kinds; these may
domain walls, strings, and monopoles as well as more ex
objects @1#. Recently Vilenkin@2# and Linde @3# proposed
that topological defects could inflate when the symmet
breaking scale,h*O(mp), thereby providing natural seed
for an inflating universe. This was later confirmed nume
cally by Sakaiet al. @4# who showed that domain walls an
global monopoles will inflate ifh*0.33mp . However, until
now, there has been no analytical confirmation of their
sults.

The simplest defects are global monopoles which are
calized in all three spatial directions. Barriola and Vilenk
@5# obtained the simplest static global monopole solut
coupled to gravity. Asymptotically, the spacetime is d
scribed by the static line element

ds252AMdTM
2 1AM

21dR21R2dV2, ~1.1!

where

AM5128pGh22
2GM

R
. ~1.2!
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The gravitational mass is given by the parameterM . There
are several features of this asymptotic spacetime which
unusual.

At infinity, this spacetime is not flat. There is a solid ang
deficit DV.4p(8pGh2) determined completely by the
symmetry-breaking scaleh. The occurrence of a defici
angle is a consequence of the nontrivial topology of the fi
configuration outside the monopole: nonvanishing gradie
along nonradial directions give an energy density outs
which falls off slowly, ;h2/R2. Equation~1.1! is then the
most general spherically symmetric solution of the Einst
equations consistent with such a source. This is analogou
a global string@6#.

As Harari and Lousto pointed out, the mass paramete
this static metric is always negative@7#. This is not, however,
a violation of the positive mass theorem—the spacetime
not asymptotically flat so that the gravitational mass does
coincide with the Arnowitt-Deser-Misner~ADM ! mass at in-
finity @8#.

A consequence of the slow falloff is that the total ener
of the monopole diverges linearly. To regularize this ene
we need to introduce a cutoff at some large radiusR* . This
cutoff will be provided by the correlation length of the scal
field, j. In cosmology, an upper bound onj is provided by
the horizon size.

When the solid angle deficit exceeds 4p (8pGh2.1),
the roles ofR andTM get interchanged. The exterior solutio
which corresponds to Barriola and Vilenkin’s ansatz is
longer static. This is precisely the regime where topologi
inflation is predicted to occur and is the regime we will
particularly interested in.

In this paper, we present a model of a global monop
which is tractable analytically and, we believe, includes
© 1998 The American Physical Society02-1
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INYONG CHO AND JEMAL GUVEN PHYSICAL REVIEW D58 063502
of its essential features. Such a model was proposed ea
by Guendelman and Rabinowitz@9# ~anticipating topological
inflation! though their motivation was very different. Th
core of the global monopole is approximated by a spheric
symmetric region of false vacuum with energy densityr and
radiusr . Outside, this core is described by a spherically sy
metric region with energy densityh2/R2 and thus described
by the asymptotic static metric~1.1!.

If the approximation stops here, a static equilibrium exi
between these two spacetime geometries only when

r 5
h

Ar
, ~1.3!

and the mass assumes a negative value:

M52
8p

3

h3

Ar
. ~1.4!

For a given theory this solution is unique. However, t
model suffers from the shortcoming that it only describe
static equilibrium and predicts such an equilibrium for
values ofh; it does not possess the scope to describe n
static configurations. This is essentially because the en
density of the false vacuum is constant. In general, when
false vacuum is converted to a true vacuum~with constant
solid angle deficit!, the energy released is transferred to t
core boundary@10#. This boundary plays an essential d
namical role. The necessary refinement of the model is
introduce a surface layer with energy densitys on the core
boundary. On dimensional grounds, we expectr;h4 and
s;h3. The Einstein equations now determine the motion
r .

If h,M p ,1 we find stable oscillating solutions for eac
negative value ofM above some threshold. These solutio
are the analogues of Harari and Lousto’s static approxi
tion.

If h>M p , nonsingular solutions with inflating cores an
asymptotically cosmological exteriors exist for allM,0.
There exists some critical value ofh, hc.M p above which
all monopoles inflate.

For eachh in the intervalM p,h,hc a stable oscillating
monopole will coexist with an inflating one of the same ma
in some strictly negative band of values ofM . This is con-
sistent with Sakai’s numerical work@4#.

The above solutions have the virtue that they are non
gular everywhere.

If M.0, all solutions collapse to form a black hole. The
also exist collapsing monopole solutions withM,0 which
terminate in a naked singularity. However, they do not p
sess a foliation as an isolated object in an asympotically c
mological spacetime. We therefore dismiss them as unph
cal.

1For convenience, we introduceM p[mp /A8p.
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We examine the global geometry of the correspond
monopole spacetimes whenM,0. Whenh.M p , the exte-
rior spacetime possesses a cosmological horizon. We
struct explicitly the Kruskal-Szekeres coordinate syst
which is nonsingular on this horizon. The maximal extens
of the exterior geometry is then presented. To provide
physical description of the exterior spacetime we ident
explicitly a foliation of this geometry which corresponds
an isolated object in an asymptotically cosmological spa
time.

The paper is organized as follows: In Sec. II, we wr
down the Einstein equations for our model. In Sec. III, t
simpler problem of wall motion in Minkowski space is dis
cussed. In Sec. IV, we examine the motion of the w
coupled to gravity and describe all possible trajectories.
Sec. V, we trace the wall trajectory in spacetime. In Appe
dix A, the wall equation of motion is analyzed in detail in
simple tractable special case. In Appendix B, the routing
the wall trajectories on Kruskal-Szekeres and Gibbo
Hawking diagrams is determined.

II. EINSTEIN’S EQUATIONS AT THE WALL

The simplest model that admits global monopoles is
scribed by the Lagrangian

L52
1

2
]mfa]mfa2

1

4
l~fafa2h2!2,

wherefa is a triplet of scalar fields. The ansatz which d
scribes a static monopole with unit topological charge is~as
in Minkowski space! fa5f(R) x̂a, wherex̂a is a radial unit
vector. The corresponding spacetime is spherically symm
ric.

At the center of the monopole, the field is in the fal

vacuum,f50, with energy densityr5
1
4

lh4 and pressure

P52r. We will approximate the core of radiusr by a re-
gion of false vacuum. The interior spacetime is then de Si
space, which we can describe by the static line element

ds252ADdTD
2 1AD

21dR21R2dV2, ~2.1!

where

AD512H2R2, H25
8pG

3
r. ~2.2!

The static chart will describe the interior ifHR,1 every-
where.

Asymptotically,f'h. The stress tensor assumes the p
fect fluid form with P52rext(R) where rext(R)'h2/R2.
The corresponding spacetime is described by the line
ment~1.1!. Harari and Lousto’s numerical calculations sho
that the asymptotic form~1.1! is approached rapidly outsid
the core. We will approximate the solution everywhere o
side the core by this asymptotic form.
2-2
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MODELING THE DYNAMICS OF GLOBAL MONOPOLES PHYSICAL REVIEW D58 063502
The exterior geometry will be static only ifh,M p .
When this limit is breached, the regionR.22M /(h2/M p

2

21) will assume a dynamical character. Strictly speaki
this is inconsistent with the static ansatz we exploit to g
erate the asymptotic form of the metric. To resolve this
consistency we must reinterpret the original ansatz as a
scription of a dynamical object. What has happened is
the timelike Killing vector which characterizes a static g
ometry has become spacelike. The radial vector, howe
remains normal to the Killing vector. The cosmological n
ture of the exterior geometry will be described more fully
Sec. V.

The continuity of the lapse and its first derivative acro
the core boundary determines the equilibrium values~1.3!
and~1.4!. We note that the maximum core size covered b
static chart is given byHR51. This limit obtains whenh
5A3M p . We conclude that a static interior is possible w
into the regimeh.M p .

Now let us include a surface energy density on the c
boundary. In the thin wall approximation, we can expl
Gaussian normal coordinates adapted to the wall to exp
the stress tensor there in the form

Ta
b5sd~n!da

b . ~2.3!

s is the constant surface energy density of the boundary.
parametern appearing in Eq.~2.3! is the proper distance
normal to the world sheet of the wall. The metric induced
the wall is given by

ds252dt21r ~t!2dV2,

wheret is the proper time registered by an observer at fix
u andw who moves with the wall. The problem reduces
the determination of the trajectory,r 5r (t).

The origin of the surface energy density is the field g
dients interpolating between the false vacuum interior a
the exterior. We approximate it:

s;r w3~energy density difference!

;r w~r2h2/r w
2 !,

wherer w is the size of the monopole. The numerical resu
of Refs.@7,4# show thatr w is proportional to 1/h. The above
relation becomes

s.sh3, ~2.4!

wheres is a dimensionless constant.
The surface energy distribution~2.3! introduces a discon

tinuity in the spacetime metric at the wall. The Einste
equations at the core boundary reduce to the form@11–13#

Ka
b~out!2Ka

b~ in!524psGda
b , ~2.5!

whereKab(in) and Kab(out) are, respectively, the extrins
curvature of the wall embedded in de Sitter space and in
06350
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exterior spacetime described by Eq.~1.1!. Using the tech-
niques developed in@12# or @13#, we find that

Kuu~ in!5rbD , Kuu~out!5rbM .

Here,bD andbM are given by

bD52ADṫD , bM5AMṫM ,

wheretD(t) andtM(t) are the de Sitter and exterior ‘‘static’
time variables,TD andTM evaluated on the wall. The over
dots refer to derivatives with respect to proper time. W
recall that@12#

bD
2 5AD1 ṙ 2, bM

2 5AM1 ṙ 2.

Now the (uu) component of Eq.~2.5! reads

bD2bM54pGsr . ~2.6!

This equation can be cast in the form

ṙ 21U~r !521, ~2.7!

where

U~r !52S F2

r 2 D 2

2H2r 2 ~2.8!

or, alternatively,

U~r !52S F1

r 2 D 2

2
2GM

r
28pGh2, ~2.9!

with

F6~r !5
M

4ps
2

r6

3s
r 31

h2

s
r , r65r66pGs2.

~2.10!

The linear term inF6 encodes completely the topology o
the scalar field.

III. WALL MOTION IN MINKOWSKI SPACE

In the limit G→0, the Einstein equations should repr
duce the description of a global monopole in Minkows
space. In this section, we examine a model of a monopol
Minkowski space. This is a useful preliminary step befo
attempting to examine Eq.~2.7! fully.

Let the core radius ber . The energy density in the core i
a constant,r, and that in the exterior;h2/R2. A surface
layer with energy densitys is located on the core boundary
The total energy of a static configuration is then given by

E5
4p

3
rr 314psr 214ph2~R* 2r !, ~3.1!
2-3
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whereR* is a cutoff. It is clear that an equilibrium exist
We minimizeE with respect tor to obtain the stable equi
librium core size:

r 052
s

r
1AS s

r D 2

1
h2

r
. ~3.2!

The ~subtracted! energyE* [E24ph2R* is then given by

E0* 5M052
4p

3

s2r 0

r S 112
rh2

s2 2A11
rh2

s2 D .

~3.3!

We note thatM0 is manifestly negative. In the limits→0,
we haver 05h/Ar andE0* 52(8p/3)h3/Ar. If we identify
E* with M , we reproduce the values obtained by Harari a
Lousto which are independent ofG.

More generally, let us examine the motion of the co
boundary. The classical action describing this motion
given by

S5E dtF4p

3
rr 314psr 2A12S dr

dt D
2

14ph2~R* 2r !G .
~3.4!

The canonical conserved energy is given by a Legen
transformation of the Lagrangian appearing in Eq.~3.4!:

E* 5
4p

3
rr 314psr 2A11 ṙ 224ph2r . ~3.5!

The only change with respect to Eq.~3.3! is that the bound-

ary term picks up kinetic energy, 4psr 2→4psr 2A11 ṙ 2.
We can recast Eq.~3.5! in the form

A11 ṙ 25
F

r 2 , ~3.6!

whereF is given by

F5
E*

4ps
2

r

3s
r 31

h2

s
r .

Equation~3.6! implies thatF must be positive on any phys
cal trajectory. This condition places a constraint on the
tent of the radial domain of the wall.

Whenṙ 2!1, the motion is well described by the potenti
appearing on the right-hand side~RHS! of Eq. ~3.1!. Clearly,
the equilibrium configuration hasr 5r 0 given by Eq.~3.2!
with energyM0 given by Eq.~3.3!. In general, we can cas
Eq. ~3.6! in the form

ṙ 21U~r !521,

where
06350
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-

U~r !52S F

r 2D 2

. ~3.7!

This is exactly the limitG→0 of Eq. ~2.7! when E* is
identified with M . We will examine the solutions admitte
by this system with our eye on the analogy with the gene
relativistic problem.

Let us first examineM,0.
We first determine whereF is positive. We note that for

each negative value ofM above some lower thresholdMc ,
the cubic functionF has two positive roots,r 1 and r 2, say,
andF is positive only in the domain@r 1 ,r 2#—physical mo-
tion is necessarily bounded. To determineMc , we observe
that whenM falls to Mc , the two roots coalesce with th
local maximum. ThusF50 andF850 simultaneously. We
find that this occurs atr 5r c5h/Ar and

Mc52
8p

3
r ch

2. ~3.8!

Below Mc , F is negative everywhere. Therefore,M5Mc
places a lower bound on the mass spectrum.

It is now simple to construct the potentialU in the regime
Mc,M,0. We note thatr 5U8522F(rF 822F). U pos-
sesses two maxima coinciding with the roots ofF at r 1 and
r 2. It possesses a single minimum given by the single po
tive root of the cubic,rF 822F.

On a physical trajectory,U<21. The static solution with
U(r )521 at its minimum determines the sharp low
boundM 0 given by Eq.~3.3! on the mass. We note thatr 0
,r c . It is then simple to see thatMc,M0 for all h. The
existence of the thresholdMc places no constraint on th
spectrum of oscillating solutions.

For eachM0,M,0, r will oscillate between two turning
points, r Min and r Max , bounded within the interval@r 1 ,r 2#.
This solution will be stable. If initially the core is displace
from equilibrium, it will oscillate about the equilibrium. In a

FIG. 1. Plot of U(r ) vs r in Minkowski space with h
50.1mp , M522mp . The wall oscillates between a minimum a
r Min and a maximum atr Max . The physical domain ofU is con-
tained within the interval@r 1 ,r 2# over whichF is positive.
2-4
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MODELING THE DYNAMICS OF GLOBAL MONOPOLES PHYSICAL REVIEW D58 063502
physical monopole, we would expect the core to relax tor 0
as the monopole radiates away its excess energy.

The potentialU(r ) is plotted in Fig. 1 for a negative valu
of M .

While both collapsing and expanding solutions appea
exist in the region outside the interval@r 1 ,r 2#, F,0 there.
Such solutions are not consistent with the boundary co
tions which correspond to a monopole. They correspond
stead to an unphysical inside-out monopole with an inte
with energy densityh2/R2 and an exterior false vacuum. It i
simple to check thatF now appears in Eq.~3.6! with a minus
sign.

If M>0, F is positive in some finite domain containin
the origin. This places a bound on the physical domain or .
U increases monotonically over this domain. The core
ways collapes in a finite proper timet0 with r;(t02t)1/3.

To summarize, in Minkowski space we saw that the sp
trum of physically realized values ofM was bounded from
below by M0. For eachM0<M,0, there is a stable oscil
lating solution and such oscillating solutions exist for
values ofh. If M>0, there is a bounded solution whic
collapses. The only possible motion in Minkowski space
bounded.

IV. WALL MOTION

In this section, we discuss the wall motion in gene
relativity. As we will see, when gravity is turned on th
situation can be quite different. In addition to determini
the energy density in the interior and on the core bound
h also determines the angle deficit in the exterior.

We would expect the interior to inflate when the co
radius exceeds the de Sitter horizon radius. On dimensi
grounds this occurs whenh*M p . Is this a necessary cond
tion?

If h,M p , the deficit DV,4p. Thus, if M>0, we
would expect to reproduce, at least qualitatively, the beh
ior of a false vacuum bubble discussed in@12#. However,
while a false vacuum bubble withM.0 always collapses in
Minkowski space, when gravity is taken into account its
terior may inflate for any value of the symmetry-breaki
scale without destroying the exterior and therefore with
any violation of flat space intuition in that region. This
because the inflation occurs behind the event horizon of
exterior Schwarzschild geometry. The inflating interior
connected by a wormhole behind this horizon. The ev
horizon signals the eventual formation of a black hole.
false vacuum bubbles are singular. IfM,0, unlike theM
.0 Schwarzschild geometry, the exterior geometry is g
bally static and there is no exterior horizon. One would n
expect to find inflating solutions, singular or otherwise. W
will demonstrate explicitly that one does not.

When h.M p , DV.4p. If, in addition, M,0, the
causal roles ofR and TM in Eq. ~1.1! are interchanged be
yond some finite value ofR. This value separates a stat
region from an expanding cosmological one. This expand
region can support an inflating interior:r can grow large
without doing so at the expense of the monopole exterio

While h*M p is a necessary condition, it is not a suf
06350
o

i-
-
r

l-

-

l

s

l

y,

al

v-

-

t

e

t
l

-
t

g

cient condition. We have already observed in Sec. II t
noninflating solutions appear to exist whenh*M p—they
certainly do if h is not too large in thes→0 limit. So h
*M p is clearly not a sufficient condition. We will demon
strate explicitly, however, that there is a critical value ofh
above which all solutions inflate.

WhereasF was positive in Minkowski space, its relevan
general relativistic extensions need not be: as demonstr
in Appendix B,F2 assumes negative values along physi
trajectories when the core is larger than a de Sitter horiz
F1 may be negative if the Barriola-Vilenkin geometry po
sesses a horizon.

In this section, we will examine the solution of Eq.~2.7!.
The determination of the physical spacetime which cor
sponds to these solutions, and whether they are physic
realizable, will require the evaluation of the sign ofF2 and
F1 . This will be deferred to the next section.

It is convenient to introduce dimensionless variables. W
define

z5Hr , m5
Al/3

8p

M

M p
, r̃65

1

h2H2 r6 . ~4.1!

Let h̃5h/M p and l̃5l/3s2. We then haveF65H22F6 ,
where

F65
1

2
l̃1/2h̃S m2

r̃6

3
z31zD , r̃653~ h̃226l̃21!.

~4.2!

The potentialU is now parametrized by three dimensionle
parameters:h̃ and l̃ which characterize the physical theor
and the~reduced! gravitational massm:

U52S F2

z2 D 2

2z252S F1

z2 D 2

2
mh̃2

z
2h̃2. ~4.3!

We will consider a theory with a fixed value ofl̃ and exam-
ine the behavior ash̃ is dialled from 0 to infinity.

Let us first examine the global properties of the functi
U. As we will see, there are important respects in which
functional form of U differs from that of its Minkowski
space counterpart. To begin with, we note thatU<0. As z
→0,

U;2
m2

z4 , ~4.4!

independent ofG. As z→`,2

2We note thatU<2z2, with equality at points whereF250, if
they exist.
2-5
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U;2F S r̃2

3
D 2

11Gz2. ~4.5!

From its asymptotics, it is clear thatU always possesses a
least one positive maximum. Here we would like to det
mine the physical conditions under which it may poss
additional positive critical points. Specifically, when does
possess a well? Recall that in Minkowski space this occ
whenMc,M,0, whereMc is defined by Eq.~3.8!.3

In general, at a critical point ofU, U850 or

l̃h̃2

4
S z1m2

r̃2

3
z3D S z12m1

r̃2

3
z3D 5z6. ~4.6!

We find that for eachh̃, there exists a critical negative ma
mc below which Eq.~4.6! possesses a single positive so
tion corresponding to a single maximum forU. For negative
m.mc , the equation possesses three positive solutions,z2 ,
z0, and z1 : two maxima z2 ~left! and z1 ~right!, and a
minimumz0 lying between them. Asm is lowered tomc , the
right-hand maximum coalesces with the minimum and th
annihilate. Let this value bezc . To determinemc , we note
that whenm5mc , in addition toU850, we also haveU9
50 at this point. We can express these two conditions in
following form:

mc5
3

2

zc

32 r̃2zc
2~ r̃1

2 zc
423!, ~4.7!

where

r̃1
2 ~8r̃1

2 1 r̃2
2 !zc

8218r̃2r̃1
2 zc

623~ r̃1
2 2 r̃2

2 !zc
4

218r̃2zc
22950. ~4.8!

There is a unique positive solution to Eq.~4.8! for each
specification ofh̃. Equation~4.7! then determinesmc . This
solution is given by the line labelledmc in the parameter
space (h̃,m) in Fig. 2. Clearlymc,m,0 represents a nec
essary condition for a stable oscillating solution.

We have now determined how the number of critic
points of the potential depends onm.

A necessary condition for classical motion is thatU<
21. For a given set of parameters, this condition will pa
tion the domain ofU into allowed~or physical! and forbid-
den subdomains. This partition, as well as the qualita
nature of the motion in the disjoint physical domains, is co
pletely determined once we know where the critical points

3In analogy with the Minkowski space treatment, it is clear tha
sufficient condition of it possessing two~or more! maxima is that
F2 possess two zeros. There is clearly then~at least! one minimum
between them. This is not, however, a necessary condition.
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U lie with respect to its turning points withU521. Let us
locate the mass values at which critical points coincide w
turning points.

The two equationsU521 andU850 can be reduced to
a form analogous to Eqs.~4.7! and ~4.8!:

m5
z

3z222F12S 22
1

3
r̃2D z2G , ~4.9!

where

~z221!~ r̃2z221!21
4

l̃h̃2
z2~3z222!250. ~4.10!

The solutions are traced on the parameter space in Fi
where they are labelledm0, m1 , andmM .

Let us describe these solutions in greater detail.
If mc,m,0, we know that there are three critical poin

and the potential possesses a well. Under what condit
will a stable oscillating solution exist in this well? In genera
we note that the left-hand maximum is always the abso
maximum:

U~z2!.U~z1!. ~4.11!

A stable oscillating solution will therefore exist if the motio
is bounded by the right-hand maximum,

U~z1!.21, ~4.12!

and the minimum lies within the physically accessible d
main of z:

U~z0!<21. ~4.13!

Equation~4.13! is saturated alongm0 in Fig. 2. The mass
spectrum of stable oscillations is bounded from below bym0.
There is a single stationary solution of sizez0.

If h̃,1, Eq.~4.12! is always satisfied. Ifh̃>1, however,
Eq. ~4.12! is saturated alongm1 . Oscillating solutions of
arbitrarily small negative mass exist whenh̃,1 but do not
when h̃.1. If h̃,1, the mass spectrum is bounded fro
above bym50; if h̃>1, the spectrum is bounded from
above bym1 .

This behavior can be accounted for analytically. Wh
m→20, the left maximum atz2 and the minimum atz0
degenerate toz50 with U(z2)50 andU(z0)→2`. In this
limit, Eq. ~4.6! determines the position of the right-han
maximumz1 :

lim
m→20

z1
4 5

1

4

l̃h̃2

11 1
36 l̃h̃2r̃2

2
.

2-6
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FIG. 2. ~a! The parametric space of the model,m vs h̃ with l̃53.33 (l50.1, s50.1). In the regionmc,m,0, the potentialU
possesses two maximaz2 , z1 , and a minimumz0 between them. Alongm0, U521 at z0; alongm1 , U521 at z1 . In the regionsm
,mc andm.0, U has a single maximumzM . U521 at z5zM alongmM . m0 andm1 terminate at the pointP which lies onmc . The
boundariesmc , m0, m1 , mM , and m50 partition the parameter space into seven regions with qualitatively different potentials

potentials on these boundaries are plotted in Fig. 2~b!. ~b.1! m0 (h̃50.5, m520.0896),~b.2! m1 (h̃51.15, m522.006), ~b.3! mM ,

m,0 (h̃50.5, m520.5136), and~b.4! mc (h̃51.57, m520.2926). ~b.5! At P (h̃5h̃c51.235, m520.2677), and~b.6! mM , m

.0 (h̃50.5, m52.9212).
e
s.
The condition~4.12! then determines the limith̃,1. This is
independent ofl̃. So for infinitesimally small and negativ
mass, oscillations exist only whenh̃,1.

Both m0 and m1 decrease monotonically withh. They
06350
terminate at the common pointP where they coincide with

mc . This end point defines a critical value ofh̃, h̃c , above
which there do not exist any stable oscillating solution
Whereas in Minkowski space the boundarymc possesses no
2-7
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FIG. 3. Plots of the potential in each of the seven regions of Fig. 2.~1! (h̃50.5, m520.07), ~2! (h̃50.5, m520.1), ~3! (h̃51.5,

m520.2), ~4! (h̃50.5, m520.4), ~5! (h̃50.5, m521), ~6! (h̃50.5, m50.2), and~7! (h̃51.5, m50.2). The potential in region~1!
possesses oscillating, collapsing, and expanding domains. In region~2!, the potential has a well but oscillations are not allowed classica
In region ~3!, the right maximum of the potential does not contain the motion. In regions~4! and ~6!, the potential has a single maximum
separating collapsing and expanding domains. In regions~5! and ~7!, the single maximum is accessible. The motion is monotonic.
in

e-
la

y
and
physical significance, here it plays a role in the bifurcation
parameter space ath̃5h̃c . We note that in the limits→0,
h̃c→A3 consistent with the static limit of the de Sitter int
rior discussed in Sec. II. This, of course, is a highly singu
limit.

There is no solution analogous tom1 for z2 . This is
06350
r

becauseU(z2).21 in this regime.
Both whenm,mc andm.0, there is a single maximum

zM of U. The conditionU(zM)521 identifies a massmM .
See Fig. 2. Ifm,0 (m.0), motion is monotonic whenm
,mM (m.mM). m5mM therefore identifies the boundar
in parameter space separating regimes of monotonic
2-8
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nonmonotonic motion. We note that along the posit

branch,mM→` as h̃→0.
We summarize as follows.
The boundariesmc , m0, m1 , mM , and m50 partition

the parameter space into seven regions labelled~1!–~7! in
Fig. 2.

In the parametric region~1! bounded bym5m0, m
5m1 , andm50 the potential possesses oscillating, colla
ing, and expanding domains. This potential is plotted in F
3~1!.

In regions ~2!–~4!, only collapsing and expanding do
mains exist. In region~2!, while the potential does possess
well, its mimimum is inaccessible classically. See Fig. 3~2!.
There are no oscillatory solutions. In region~3!, the potential
again possesses a well. However, the right maximum
longer provides a barrier containing the motion in the we
Motion in the well is unstable towards expansion. See F
3~3!. In region~4!, the potential possesses a single classic
inaccessible maximum@see Fig. 3~4!# which separates col
lapsing from expanding domains.

In region ~5!, the single maximum of the potential is a
cessible. The wall trajectory is monotonic. See Fig. 3~5!.

For m.0, the potentials in regions~6! and ~7! are quali-
tatively identical to those in regions~4! and~5!, respectively.

See Fig. 3~6! and Fig. 3~7!. If h̃,1, the motion in these
regimes is qualitatively identical to that of the false vacuu
bubbles discussed in Ref.@12#.

In the next section, we will construct the spacetime wh
corresponds to each of these trajectories.

The above analysis simplifies considerably if we assu
r̃250 for all h̃ andl̃. As we will demonstrate in Appendix
A, the overall picture is qualitatively identical to thes
5const case.

V. EMBEDDING THE WALL TRAJECTORIES
IN SPACETIME

In this section, we trace the wall trajectory in spacetim
If h̃,1, the exterior metric~1.1! does not possess a ho

rizon. The singularity atR50 is a naked one. However,
we truncate the exterior spacetime at some finite value oR
and replace it by a nonsingular patch of de Sitter space,
singularity is removed. The physical spacetime is free
singularities. The static coordinate system (R,TM) is glo-
bally valid in the exterior.TM is the asymptotic time andṫ M
must be positive along physical trajectories. Just as in
Minkowski space analysis, the sign ofṫ M is the sign ofF1 .
So F1 must be positive everywhere along trajectories.
Appendix B, we show thatF1 is positive along the oscilla
tory solution and negative along the others. The only phy
cal solutions are oscillatory. It is simple to check thatz,1
everywhere along these trajectories. The interior is co
pletely covered by a static patch of de Sitter space. It the
fore does not inflate. A remote observer will eventually s
this stable oscillating motion of the wall. The remaining tr
jectories correspond to unphysical inside-out solutions. T
06350
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is completely analogous to the Minkowski space model d
cussed in Sec. III.

If h̃.1, the surfaceR5r H52GM/(12h̃2) is null. The
coordinate system~1.1! breaks down atR5r H . If R,r H ,
the Killing vector]TM

is timelike, and the spacetime is stati

if R.r H , ]TM
is spacelike. The spacetime is dynamical

this region. At large values ofR, the spacetime metric can b
approximated by

ds25
2dR2

h̃221
1~ h̃221!dTM

2 1R2dV2. ~5.1!

As discussed in@14#, each constantTM slice of the
asymptotic geometry is a~211!-dimensional Friedman-
Robertson-Walker universe expanding linearly with timeR.
The asymptotic geometry can be represented locally b
spherical cylinderS23R. This is a highly anisotropic cos
mology.

We can introduce Kruskal-Szekeres coordinates (u,v)
that cover the complete exterior spacetime. The maximal
tension of this coordinate system is the spacetime show
Fig. 4. This spacetime is represented by a subset of a pl
to each point of which corresponds a two-sphere of radiusR.
This plane divides naturally into four quadrants. The coor
nates are defined as follows in terms of the ‘‘static’’ coord
nates in each of these quadrants: in quadrants I and III~upper
sign for quadrant I!,

FIG. 4. Trace of the wall trajectories on a Kruskal-Szeke

diagram forh̃.1. The physical exterior lies in region~II ! and~III !.
An identical physically inaccessable copy is provided by the
gions ~I! and ~IV !. The oscillating trajectoryO @region ~1!# lies
within the static region~III !. The expanding bounce trajectoryB(3)

also originates there but crosses the null surfaceu52v to enter
region ~II !, changing its angular direction atT. The trajectory lies
completely inside the physical region. The collapsing trajectorC
lies within the unphysical region~I!. The remaining bounces
B(1),(2),(4) and the monotonically expandingM trajectories origi-
nate in the unphysical region but cross the horizon to enter~II !.
2-9
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u56S 12
R

r H
D 1/2

expS R

2r H
D coshS TM

t1
D ,

v56S 12
R

r H
D 1/2

expS R

2r H
D sinhS TM

t1
D ,

and in quadrants II and IV~upper sign for quadrant II!,

u56S R

r H
21D 1/2

expS R

2r H
D sinhS TM

t1
D ,

v56S R

r H
21D 1/2

expS R

2r H
D coshS TM

t1
D ,

wheret15r H
2 /GM. We have

u22v25S 12
R

r H
DexpS R

r H
D ,

v
u

5tanhS TM

t1
D ~ in I, III !,

u

v
5tanhS TM

t1
D ~ in II, IV !. ~5.2!

The spacetime is defined by the regionu22v2<1 on theu-
v plane.R-constant lines are hyperbolas which degener
into straight linesv56u on the horizonsR5r H . There are

FIG. 5. Trace of the wall trajectories on a Gibbons-Hawki

diagram for h̃,Al̃. The oscillating trajectoryO lies completely
within ~III !. The expanding trajectoryB(3) lies completely within
~II ! and ~III !. It changes its angular direction within~II !. The col-
lapsing typeC trajectory and both expandingB(1),(2),(4) andM
trajectories originate outside of the horizon.B andM, however,
cross the horizon and enter~II !. B(1),(2),(3),(4) andM move asymp-
totically to the left.
06350
te

two naked singularities given by the timelike hyperbolasu2

2v251. TM-constant lines are straight lines passing throu
the origin.

One way to describe the global geometry of this spa
time is to consider a foliation by constantv hypersurfaces.
The spacetime is symmetric with respect to time reversav
→2v. The hypersurfacev50 is momentarily static. The
topology of this hypersurface isS3 with singular poles. The
equatorial radius isr H . As v is increased, the equatoria
radius increases monotonically while the geodesic dista
between the poles increases more slowly. While the sin
larities of the maximally extended geometry are naked, th
do not appear on the truncation of this geometry which c
responds to the physical exterior region unless the core o
nates at or collapses tor 50.

The physical exterior region surrounding a global mon
pole is clearly very different from the global geometry w
have just described. Sakaiet al. @4# have described numeri
cally the evolution of an inflating global monopole in
spacetime which is initially flat. The initial core radius i
their model lies outside the monopole horizon. Let us s
pose that we place the monopole on the left of theu-v plane.
The maximal extension of such a slice might be appro
mated by the flat spatial hypersurfaceS in Fig. 4. It coin-
cides with the hypersurfacev50 at the point (21,0),
crosses the horizonv52u at some finite positive value ofv,
and tends asymptotically tov5u. The initial data on the
slice will not generally be stationary. The future of this sli
lies entirely within the two quadrants~II ! and ~III !. The
asymptotic region described by Eq.~5.1! lies completely
within region~II !. The remaining two quadrants~I! and~IV !
are inaccessible for the boundary conditions we are con
ering. This is analogous to the description of stellar collap
where half of the maximally extended Schwarzschild geo
etry gets discarded.

FIG. 6. Trace of the wall trajectories on a Gibbons-Hawki

diagram forh̃.Al̃. The expanding trajectories,B(3) andB(4) , lie
completely within~II ! and ~III !. The collapsing typeC trajectory
and expandingM trajectory originate outside of the horizon.M,
however, crosses the horizon and then changes its angular dire
in ~II !. B(3),(4) andM move asymptotically to the right.
2-10
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Now let us examine the interior de Sitter space. To tra
the trajectory in de Sitter space it is convenient to describ
by Gibbons-Hawking coordinates (U,V). These coordinates
have been described elsewhere in detail. We refer the re
to @12# for further details. Briefly, with respect to these c
ordinates, de Sitter space is represented by the regionuU2

2V2u<1 on theU-V plane, each point of which represents
two-sphere of radiusR, related toU andV by U22V25(1
2HR)/(11HR). See Fig. 5. The de Sitter horizon of th
north @south# pole (21,0) @~1,0!# is represented byV
5U @V52U#. The center of the monopole is located o
the left at the north pole.

The flat sliceS in the maximal extension of the exterio
geometry will be truncated at its intersection with the r
evant wall trajectory. It can, however, be extended into
interior. Indeed, the standard presentation of de Sitter sp
is as a spatially flat Friedman-Robertson-Walker univer
This slice is labelledS8 in Fig. 5. S8 coincides with the
hypersurfaceV50 at the point (21,0), crosses the horizo
V52U at some finite positive value ofV, and tends asymp
totically to V5U. The future ofS8 lies entirely within the
two quadrants~II ! and ~III !. Initial data are defined on th
union of the interior and exterior flat slices.

The role played by the two fugacitiesbD and bM was
described in@12# in the context of a Schwarzschild exterio
They demonstrated thatbD (bM) was proportional to minus
the angular velocity about the origin on a Gibbons-Hawk
~Krustal-Szekeres! spacetime diagram for the interior~exte-
rior!. In Appendix B, we show that the sign ofbD (bM)
coincides with the sign ofF1 (F2). These signs therefor
determine uniquely the routing of trajectories about the o
gins of Figs. 4 and 5. The relevant interior and exter
spacetimes can then be constructed with this information

Let us first discuss the trajectories of the wall in the e
terior.

All oscillating trajectories lie entirely within region~III !
on the Krustral-Szekeres plane. Their trajectories are labe
O in Fig. 4.

We describe bounces with the stationary initial conditi

ṙ 50.
There are two qualitatively distinct expanding bounce t

jectories. The trajectory, labelledB(3) in Fig. 4 @which cor-
responds to parameters lying within region (3) in Fig.#,
also originates in region~III ! though this region need not b
part of the physical spacetime. If it is, the exterior posses
a horizon. The bounce may also then have a stationary p
within the physical region. It must, however, always cro
the horizon and enter region~II !. Its motion changes direc
tion at some point outside the horizon which we can se
occur atTM50 without loss of generality.~See Appendix
B.! The remaining expanding bounce trajectoriesB(1),(2),(4)
@corresponding to parameters in regions~1!, ~2!, and ~4! in
Fig. 2#, as well as all monotonically expanding trajectori
M @region ~5!#, originate in the unphysical region~I!. They
do not possess any physically accessible stationary po
However, they cross the horizon and enter the physical
gion ~II !. There is no horizon in the exterior.
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All collapsing trajectories, labelledC in Fig. 4, lie entirely
within the unphysical region~I!. They cannot be realized in
an asymptotically cosmological geometry.

As h̃ increases the horizon scale shrinks to zero,r H→0,
where the exterior geometry is singular. The external me
~1.1! we have been exploiting, based on Barriola and Vile
kin’s asymptotic exact solution, is not expected to provid
valid approximation under these circumstances. In particu
in this limit, the description of the regionR,r H breaks
down. However, we also found that oscillating solutions
not exist for largeh; the expanding solution of typeB(3) is
expected to be formed in region~II ! with an initial size much
larger thanr H . The analysis of trajectories remains valid.

The expanding typeB(3) motion is unbounded,r→`.
However, outside the horizon, the exterior spacetime is it
expanding. After an initial invasive period~to T in Fig. 4! the
expansion of the wall is not at the expense of the amb
exterior. All expanding trajectories move eventually to t
left. Therefore, a remote observer in the exterior is safe fr
being swallowed by the expansion of the monopole. T
observer will, however, eventually see all trajectories.

In Figs. 5 and 6, we plot the corresponding embedding
possible wall trajectories in de Sitter space.

Oscillating trajectoriesO, both for h̃>1 and for h̃,1,
are contained completely within region~III ! on the Gibbons-
Hawking plane. The wall does not cross the horizon and
interior does not inflate.

Along the infinite trajectories of typeB andM, however,
r must cross the de Sitter horizon at some point and e
region ~II !. The interior spacetime necessarily inflates. T
qualitative nature of these inflating solutions will depend
the magnitude ofh̃. There is a critical value ofh̃, h̃D

5Al̃, below which all inflating trajectories move asympto
cally to the left, and above which they all move to the rig
Compare Fig. 5 with Fig. 6. Once any constantTD hypersur-
face is breached, it cannot be recrossed. A foliation of
Sitter space by constantV hypersurfaces reveals that th
spherically symmetric inflating region in the former ca
(h̃,h̃D) is contained completely in the northern hemisphe
of de Sitter space; in the latter (h̃.h̃D) it contains the equa-
tor. The volume of the inflating region increases with i
creasedh̃.

Technically, at the critical valueh̃5h̃D , r̃250. If h̃
.h̃D , then r̃2,0. In Appendix B, we demonstrate explic
itly how the sign ofF2 and hence the routing of trajectorie
are affected. Ifh̃,h̃D , B(3) originates in~III ! and changes
direction outside the de Sitter horizon.B(1),(2),(4) andM
originate in~I!. They do not change direction.

If h̃.h̃D , B(3) still originates in ~III !. However, it no
longer changes direction outside the de Sitter horizon.
note thath̃D.h̃c so that parameter regions~1! and ~2! are
not present.B(4) now originates in~III !. It does not change
direction.M still originates in~I!. However, it now changes
direction in ~II !.

In general, the initial region of de Sitter space bounded
B(3) may be smaller than the horizon. That bounded byB(4)

may also be whenh̃.h̃D . B(1),(2) andM, however, always
contain a horizon.
2-11
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VI. CONCLUSIONS

We have presented a simple model of a global monop

This model predicts that ifh̃[h/M p,1, there is always a
stable static solution with a negative gravitational ma
There is no inflation. Ifh̃.1, but below some critical value
there exist classically stable analogues of these static m
poles. However, the exterior spacetime is no longer sta
For all h̃.1, there exist nonsingular inflating monopol
with strictly negative gravitational mass.

These inflating solutions differ from the false vacuu
bubble solutions examined in@12# in the important respec
that the spacetime is nonsingular.

The monopole interior inflates when the core radius
ceeds the de Sitter horizon radius. Once the wall radiur
crosses the horizon it must continue to expand. There ar
inflating solutions with constantr .

In a false vacuum bubble withM.0, the inflating interior
does not destroy the exterior because it occurs behind
event horizon of the exterior Schwarzschild geometry. In
present case withM,0, the picture is very different. Ther
are no horizons whenh̃,1. But there is no inflation, and s
there is no difficulty reconciling physics in the interior wit
that in the exterior. However, whenh̃.1 there are inflating
monopoles but no wormhole and no event horizon. To
derstand what is happening, we found it useful to explo
Kruskal-Szekeres diagram, Fig. 4, representing the glo
spacetime structure of the exterior. There is a cosmolog
horizonv52u beyond which the spacetime to the future
any spacelike asymptotically flat slice is dynamical. In th
region the roles ofT andR get interchanged. The Schwarz
child parameterT is no longer the proper time of an inertia
observer atR5`. ]TM

is a spatial Killing vector in this re-

gion. R is time. AsR→`, the geometry can be represent
by a universe expanding linearly with timeR along two di-
rections. Because of this expansion, the unlimited expan
of the core radius is not at the expense of the exterior sp
time. If h is sufficiently large, the monopole horizon is sma
and the core boundary will always be located in the dyna
cal region. It inflates.

We emphasize that we have not solved the field equati
Considering, however, the simplifying assumptions we h
made to model the system, the critical value we find,h̃c
'1.235 (hc'0.25mp), agrees well with the valuehc
'0.33mp determined numerically by Sakaiet al. @4#. In ad-
dition, we note that with a flatterf6 potential, using the
numerical technique adapted in@4,14#, we obtain the numeri-
cal valuehc'0.265mp which is closer to our critical value
The flatter the potential, the better the thin wall approxim
tion is expected to be. These agreements make us confi
that the thin wall approximation we have exploited does
introduce spurious solutions not displayed by the fi
theory. The thin wall approximation, of course, will not b
uniformly valid over the complete range of parameters d
cussed in this paper. In addition, it is expected to break do
when the monopole radius is very small. However, no c
mologically interesting solutions have been found in this
gime.
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There are several open questions related to this work
merit further examination.

For eachh̃ in the interval 1,h̃,h̃c , we saw that a stable
oscillating solution coexists with an expanding solution
the same mass in some strictly negative band of values om.
It would appear that all noninflating monopoles are theref
metastable withh̃.1: there is the possibility of its tunneling
into an inflating configuration. In the semiclassical appro
mation tunneling will be described by an instanton whi
interpolates between the oscillating and inflating solutio
@13#.

A static monopole minimizes the energy within the top
logical class to which it belongs. We would expect it to
stable against perturbations. It is not so clear what to exp
in an inflating monopole. This question can be addres
within the context of the present model by examining t
stability of the exterior geometry with respect to perturb
tions. Formally this problem is almost identical to the ana
sis of perturbations about a Schwarzschild geometry. Ho
ever, the exterior is now cosmological, not static, and
boundary conditions involved are very different.

We have only considered global monopoles. It should
straightforward to examine gauge monopoles, as well as
mic strings and domain walls, in this approximation@15#.
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APPENDIX A: ANALYSIS OF THE WALL MOTION
IN A SIMPLIFIED LIMIT

In this section, we analyze the wall motion in the analy
cally tractable special case given byr̃250.

We note that the reduced energy density differencer̃2

defined by Eq.~4.2! is bounded from below by the negativ
value 23l̃21. In this regime, the gravitational potential
strong. It has no Minkowski space analogue.r̃2 diverges to
plus infinity ash̃→0. This is the Minkowski limit.r̃2 van-

ishes whenh̃5Al̃. Remarkably, the potential simplifies o
this subset of parameter space deep in the nonperturb
regime. Whenr̃250,

F25
1

2
h̃2~m1z! ~A1!

is linear in z with slope h̃2/2. The necessary condition fo
classical motion,U<21, now assumes the particularl
simple form
2-12
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uF2u>Gs~z!, ~A2!

where

Gs~z!5z2~12z2!1/2

if z<1 and zero otherwise. We note that

Gs8~z!5
z~223z2!

~12z2!1/2
, Gs9~z!5

229z216z4

~12z2!3/2
.

The functionGs has a single maximum atz5A2/3, an inflec-
tion point at zi5A(92A33)/12, and vanishes atz50 and
z51. The inequality~A2! is very simply illustrated graphi-

FIG. 7. ~a! Plots of uF2u vs z andGs vs z with fixed h̃50.9.
With a small negative mass~I: m520.07), there are four intersec
tions corresponding to bouncing points in the potential. Asm de-
creases, oscillation disapears~II: m520.3) and then the wall tra-
jectory becomes monotonic~III: m521.85) as in the case o

positive mass~IV: m50.4). ~b! Parameter space withr̃250.
@Compare Fig. 2~a!.# The only qualitative divergence from the ge

neric behavior is thatmM diverges to2` as h̃→0.
06350
cally. There are three possibilities. Two intersections of
graphs uF2u and Gs indicate the existence of two bounc
motions described in the text, one of which collapses and
other expands. Four intersections~three withF2 and one
with 2F2) indicate, in addition, the existence of an osc
lating solution lying in the domain between the two bounc
Zero intersection indicates a monotonic solution. We illu
trate all three possibilities in Fig. 7.

With h̃ fixed, let us dialm beginning withm50 and
decreasing through negative values.

Suppose thatm is small and negative. Only two of th
possibilities described above are possible: either there
two or there are four interections ofuF2u andGs . Now when
m50, 2F2 can intersectGs only atz50.F2 also intersects
Gs at z50. It will reintersectGs only if its slope lies below
some critical value. We find

z42z21S h̃2

2
D 2

<0.

There exist two real solutions if and only if the discrimina
of the quadratic inz2 is positive, orh̃<1. This reproduces
the criterion for the existence of a zero mass oscillating
lution obtained earlier in our general discussion.

Let h̃.1. It is clear that if, in addition,h̃ lies above some
critical valueh̃c , F2 will never intersectGs more than once.
This critical value occurs when the slope ofF2 exceeds the
maximum slope ofGs . Thush̃c

252Gs8(z5zi), where

Gs8~z5zi !5
1

4
~211A33!A92A33

31A33
,

which givesh̃c'1.203.
For all h̃ within the range 1<h̃<h̃c , there will exist

some band@m0 ,m1# within whichF2 will intersectGs three
times. These values are determined by the real solutions

F25Gs , F28 5Gs8 , ~A3!

satisfying, respectively,Gs9,0 andGs9.0. These equations

~A3! reduce to Eqs.~4.10! and ~4.9! on settingr̃250. The
solution is represented by the linesm0 andm1 on theh̃-m
plane in Fig. 7. The interpretation is identical to that for t
generic case.

A simple bound can be placed onmM by inspection. Let
the position of intersection of2F2 andGs be zM when m

5mM . We havemM52zM22Gs(zM
)h̃22. An upper bound

is obtained by approximating the position of intersection
z51, mM,21. A lower bound is obtained by replacin
Gs(zM) by the maximum ofGs which is 2A3. Thus

mM>212
4

3A3
h̃22. ~A4!
2-13
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The one qualitative difference with the generic case is t
mM→2` as h̃→0 along its negative branch. This dive
gence can be justified as follows: ifr̃250, the limit h̃→0
implies thats→`. A large value ofs corresponds to a larg
energy density on the surface compared to that in the inte
—a situation which is never realized in a monopole.

Finally, we can determine the functional formmc

5mc(h̃) exactly. Settingr̃250, Eq. ~4.8! implies

z5S 11A33

48

l̃h̃2

4
D 1/4

5S 11A33

192 D 1/4

h̃.

Equation~4.7! then determines
06350
t

or

m~ h̃ !5
2151A33

48 S 11A33

12 D 1/4

h̃,

which is linear inh̃ with negative slope and independent
Newton’s constantG.

APPENDIX B: ROUTING OF THE WALL TRAJECTORIES
ON KRUSKAL-SZEKERES AND GIBBONS-HAWKING

DIAGRAMS

Let us rewrite Eq.~4.3! as

˙2
1 2
FIG. 8. F1
2 vs z andGM vs z for h̃,1 in the four regions of parameter space,~1!, ~2!, ~4!, and ~5! ~see Fig. 2!: ~a! region ~1! (h̃

50.9, m520.16), ~b! ~2! (h̃50.9, m520.2), ~c! ~4! (h̃50.5, m520.4), and~d! ~5! (h̃50.5, m521). F1 is positive in the central
physical domain ofF1

2 in ~a! and ~b! while it is negative in the other two. Intersections ofF1
2 andGM indicate the turning points of the

potential. In~a!, the last intersection on the right top is not shown.
2-14
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FIG. 9. F1
2 and GM vs z for h̃.1 in the five regions~1!–~5! of Fig. 2: ~a! region ~1! (h̃51.1, m520.21), ~b! ~2! (h̃51.1, m5

20.25), ~c! ~3! (h̃51.5, m520.27), ~d! ~4! (h̃51.5, m520.5), and~e! ~5! (h̃51.5, m521.2). F1 changes sign on the expandin
domain in~c!. GM vanishes atz50 and at the exterior horizon.
l

l-
T

nge
s

where

GM5z3@~12h̃2!z2mh̃2#, GD5z4~12z2!,

andF6 are given by Eq.~4.2!. Classical motion of the wal
is allowed only in domains whereF1

2 .GM or, equivalently,
F2

2 .GD . Points whereF6
2 5GM ,D , if they exist, mark the

turning points of the motion.
In Sec. V we claimed that the sign ofF1 andF2 deter-

mines the routing of the wall trajectory on the Kruska
Szekeres and Gibbons-Hawking diagrams, respectively.
show this~in the former case!, we note that Eqs.~2.6!–~2.9!
relateF1 to the fugacitybM : F15z2bM . We exploit the
definition of bM and Eq.~5.2! to give
06350
o

bM5AMṫ M

5
8G2M2

~128pGh2!2

1

r
expS 2

128pGh2

2GM
r D ~ u̇v2uv̇ !.

This is independent of the quadrant in question. The cha
of the polar angleuM5tan21(v/u) on the Kruskal-Szekere
plane is

u̇M5
uv̇2u̇v

u2
cos2uM .

ThereforebM;2 u̇. The sign ofF1 determines the routing
of the trajectory about the origin (0,0). PositiveF1 corre-
sponds to clockwise motion.
2-15
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FIG. 10.F2
2 andGD vs z for h̃,Al̃: ~a! region~1! (h̃50.9,m520.15),~b! ~2! (h̃50.9,m520.2),~c! ~3! (h̃51.5,m520.27),~d-4!

~4! (h̃50.5,m520.4), and~d-5! ~5! (h̃50.5,m521).F2 is positive in the central physical domain and negative in the others. In~c!, the
right part ofF2

2 is not shown.
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In de Sitter space, we get

bD52ADṫD52
1

H
~11Hr !2~UV̇2U̇V!;2 u̇D ,

whereuD5tan21(V/U) andF25z2bD . As before, the sign
of F2 determines the routing of the trajectory on t
Gibbons-Hawking diagram. PositiveF2 , as forF1 , implies
clockwise motion.

If h̃,1, there are four distinct regimes in parameter sp
we need to analyze, labeled~1!, ~2!, ~4!, and ~5! in Fig. 2.
We plot bothF1

2 and GM vs z in Fig. 8 for each of these
cases in turn.GM is positive everywhere because there is
06350
e

horizon in the exterior. As we argued in Sec. V the on
physically acceptable values ofF1 are positive.

In ~1!, GM intersectsF1
2 at four points. There are thre

disjoint domains where classical motion is allowed. From
left to the right, they correspond to collapsing, oscillatin
and expanding motion. The sign ofF1 is positive on the
oscillating domain and negative in the others.

In ~2!, GM.F1
2 in the central region, indicating that th

minimum of the potential well is inaccessible—there are
classically allowed oscillations. However,F1 is negative on
the two accessible domains.

In ~4!, GM intersectsF1
2 ; in ~5!, it does not~motion is

monotonic!. F1 is negative everywhere in both cases.
If h̃.1, GM50 whenR5r H . Whereas Fig. 9 is superfi
2-16
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cially identical to Fig. 8 for the regimes~1!, ~2!, ~4!, and~5!,
the physical interpretation is very different because of
existence of the horizon.

In ~1!, F1 is positive on the oscillating domain. This lo
cates the oscillating trajectory in~III ! and not in~I!. F1 is
negative in the remaining domains. The collapsing traject
necessarily lies in~I!. The expanding solution has its statio
ary point in ~I!, crosses the horizon, and enters~II !. See
Fig. 4.

FIG. 11. F2
2 andGD vs z for h̃.Al̃ in region ~3! (h̃52, m

520.2), ~4! (h̃52, m520.5), and~5! (h̃52, m521.2).F2 is
positive in the domain of increasingF2

2 . In region~5!, F2 changes
sign in the expanding domain.
r
e,

ev

06350
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In ~2! and ~4!, the collapsing and expanding trajectori
are located as in~1! above. In~5!, the monotonic trajectory
originates atr 50 in region~I!, crosses the horizon, and en
ters~II ! exactly like the expanding trajectories in~2! and~4!.

All intersections ofF1
2 with GM lie within the horizonr

,r H . Stationary points necessarily lie in the static region
In the remaining regime~3!, there is an additional featur

we have not encountered so far. In the expanding dom
F1 changes sign from positive to negative beyond the h
zon. This means that the trajectory~labelled B(3)) must
change its angular course at some point on the Krus
Szekeres plane. Without loss of generality we can always
this value toTM50. This trajectory evolves clockwise prio
to this point and counterclockwise thereafter. See Fig. 4.

Now let us turn inwards. In contrast toF1 , the sign of

the leading term2 r̃2z3 appearing inF2 does depend on the
magnitude ofh.

If r̃2.0 (h̃,Al̃), the functional form ofF2 is quali-

tatively identical to that ofF1 for h̃.1 and the location of
trajectories on the Gibbons-Hawking plane is the same
that for the Kruskal-Szekeres plane~Fig. 10!.

If r̃2,0 (h̃.Al̃), however,F2
2 intersectsGD twice in

regions~3! and ~4! ~Fig. 11!. Unlike the previous case,F2

.0 everywhere along the expandingB(3) trajectories. The
polar angle is monotonic. The stationary point ofB(4) has
moved from~I! into ~III !. See Fig. 6.F2 , on the other hand
now changes sign in the domainz.1 alongM(5) . The cor-
responding trajectories are traced on Fig. 6.
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