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A thin wall approximation is exploited to describe a global monopole coupled to gravity. The core is
modeled by de Sitter space, its boundary by a thin wall with a constant energy density, and its exterior by the
asymptotic Schwarzschild solution with negative gravitational mdssand solid angle deficitAQ/4m
=87G »?, wherey is the symmetry-breaking scale. The deficit angle equalsvien = 1/\/87G=M p- We
find that(1) if »<M,, there exists a unique globally static nonsingular solution with a well-defined mass,
My<0. M provides a lower bound oM. If My<M<O0, the solution oscillates. There are no inflating
solutions in this symmetry-breaking regin@) If =M, nonsingular solutions with an inflating core and an
asymptotically cosmological exterior will exist for & <0. (3) If % is not too large, there exists a finite range
of values ofM where a noninflating monopole will also exist. These solutions appear to be metastable towards
inflation. If M is positive, all solutions are singular. We provide a detailed description of the configuration
space of the model for each point in the space of parameigh ) and trace the wall trajectories on both the
interior and the exterior spacetimes. Our results support the proposal that topological defects can undergo
inflation. [S0556-282(198)04216-7

PACS numbes): 98.80.Cq, 04.25:g, 11.27+d

I. INTRODUCTION The gravitational mass is given by the parameierThere
are several features of this asymptotic spacetime which are
Phase transitions occurring in the early universe can givenusual.
rise to topological defects of various kinds; these may be At infinity, this spacetime is not flat. There is a solid angle
domain walls, strings, and monopoles as well as more exotideficit AQ=47(87G7?) determined completely by the
objects[1]. Recently Vilenkin[2] and Linde[3] proposed symmetry-breaking scale;. The occurrence of a deficit
that topological defects could inflate when the symmetry-angle is a consequence of the nontrivial topology of the field
breaking scalez=O(m,), thereby providing natural seeds configuration outside the monopole: nonvanishing gradients
for an inflating universe. This was later confirmed numeri-along nonradial directions give an energy density outside
cally by Sakaiet al. [4] who showed that domain walls and which falls off slowly, ~ 7%/R?. Equation(1.1) is then the
global monopoles will inflate if7=0.33m,. However, until  most general spherically symmetric solution of the Einstein
now, there has been no analytical confirmation of their reequations consistent with such a source. This is analogous to
sults. a global string 6].
The simplest defects are global monopoles which are lo- As Harari and Lousto pointed out, the mass parameter in
calized in all three spatial directions. Barriola and Vilenkin this static metric is always negatiyé]. This is not, however,
[5] obtained the simplest static global monopole solutiona violation of the positive mass theorem—the spacetime is
coupled to gravity. Asymptotically, the spacetime is de-not asymptotically flat so that the gravitational mass does not

scribed by the static line element coincide with the Arnowitt-Deser-MisnéADM) mass at in-
finity [8].
A consequence of the slow falloff is that the total energy
ds2= _AMdeﬂ+A|\7/|ld R2+ R2d02, (1. of the monopole diverges linearly. To regularize this energy

we need to introduce a cutoff at some large radrdis This
cutoff will be provided by the correlation length of the scalar
where field, £. In cosmology, an upper bound @nis provided by
the horizon size.
When the solid angle deficit exceedsr 487G 7*>1),
the roles ofR andT),, get interchanged. The exterior solution

Ay=1-87Gn?— 2GM _ (1.2) which corrgspond§ to Bayriola and Vilenkin’s ansatz is_no
R longer static. This is precisely the regime where topological
inflation is predicted to occur and is the regime we will be
particularly interested in.
*Electronic address: cho@cosmos2.phy.tufts.edu In this paper, we present a model of a global monopole
"Electronic address: jemal@nuclecu.unam.mx which is tractable analytically and, we believe, includes all

0556-2821/98/58)/06350217)/$15.00 58 063502-1 © 1998 The American Physical Society



INYONG CHO AND JEMAL GUVEN PHYSICAL REVIEW D58 063502

of its essential features. Such a model was proposed earlier We examine the global geometry of the corresponding
by Guendelman and Rabinowit@] (anticipating topological monopole spacetimes whéh<0. Wheny>M,, the exte-
inflation) though their motivation was very different. The rior spacetime possesses a cosmological horizon. We con-
core of the global monopole is approximated by a sphericallystruct explicitly the Kruskal-Szekeres coordinate system
symmetric region of false vacuum with energy dengitgnd  which is nonsingular on this horizon. The maximal extension
radiusr . Outside, this core is described by a spherically sym-of the exterior geometry is then presented. To provide a
metric region with energy density?/R? and thus described physical description of the exterior spacetime we identify

by the asymptotic static metrid.1). explicitly a foliation of this geometry which corresponds to
If the approximation stops here, a static equilibrium existsan isolated object in an asymptotically cosmological space-
between these two spacetime geometries only when time.

The paper is organized as follows: In Sec. Il, we write
down the Einstein equations for our model. In Sec. Ill, the
(= n (1.3 simpler problem of wall motion in Minkowski space is dis-

' cussed. In Sec. IV, we examine the motion of the wall
coupled to gravity and describe all possible trajectories. In
Sec. V, we trace the wall trajectory in spacetime. In Appen-
dix A, the wall equation of motion is analyzed in detail in a
simple tractable special case. In Appendix B, the routing of

8w 7’ the wall trajectories on Kruskal-Szekeres and Gibbons-
M=-—=- s (1.4  Hawking diagrams is determined.

and the mass assumes a negative value:

For a given theory this solution is unique. However, the Il. EINSTEIN'S EQUATIONS AT THE WALL

model suffers from the shortcoming that it only describes a The simplest model that admits global monopoles is de-

static equilibrium and predicts such an equilibrium for all scribed by the Lagrangian

values ofn; it does not possess the scope to describe non-

static configurations. This is essentially because the energy

density of the false vacuum is constant. In general, when the L=— E& R PR — E)\(d)aqsa_ 7?)?

false vacuum is converted to a true vacu(@mith constant 27K 4 '

solid angle deficjt the energy released is transferred to the

core boundary10]. This boundary plays an essential dy- where ¢? is a triplet of scalar fields. The ansatz which de-

namical role. The necessary refinement of the model is tgcribes a static monopole with unit topological chargeats

introduce a surface layer with energy densityon the core in Minkowski space ¢?= ¢(R)x?, wherex? is a radial unit

boundary. On dimensional grounds, we expgetn* and  vector. The corresponding spacetime is spherically symmet-

o~ 7°. The Einstein equations now determine the motion ofric.

r. At the center of the monopole, the field is in the false
If 77<Mp,1 we find stable oscillating solutions for each

negative value oM above some threshold. These solutions

are the analogues of Harari and Lousto’s static approximap=—,. We will approximate the core of radiusby a re-

tion. gion of false vacuum. The interior spacetime is then de Sitter

If »=M,, nonsingular solutions with inflating cores and space, which we can describe by the static line element
asymptotically cosmological exteriors exist for &1 <0.

There exists some critical value @f ».>M, above which

1
vacuum,$=0, with energy density= Z)\ »* and pressure

all monopoles inflate. ds’=—Apd T3 +Ap 'dRP+ R?d0?, 21
For eachy in the intervalM ,< »< 7, a stable oscillating

monopole will coexist with an inflating one of the same massVhere

in some strictly negative band of values Mf. This is con-

sistent with Sakai's numerical woifld]. 87G
The above solutions have the virtue that they are nonsin- Ap=1-H?R?, HZZTP- 2.2

gular everywhere.

I M.>O’ all SO“."“O”S collapse to fo_rm a black hoIe._ThereThe static chart will describe the interior HR<1 every-
also exist collapsing monopole solutions with<<O which where

terminate.in.a naked §ingularity. .Hovyever, they do. hot pos- Asymptotically, ¢~ 5. The stress tensor assumes the per-
sess a foliation as an isolated object in an asympotically CO%%ct fluid form with P=—pe(R) Where po(R)~ 7% R?
mological spacetime. We therefore dismiss them as unphysxl-.he corresponding spaceti?r);e is describgc(j by the line ele-

cal. ment(1.1). Harari and Lousto’s numerical calculations show
that the asymptotic fornil.1) is approached rapidly outside
the core. We will approximate the solution everywhere out-
For convenience, we introdua‘dpzmp/\/ﬁ. side the core by this asymptotic form.
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The exterior geometry will be static only <M. exterior spacetime described by EG.1). Using the tech-
When this limit is breached, the regi(R1>—2M/(772/M§ nigues developed ifl2] or [13], we find that
—1) will assume a dynamical character. Strictly speaking,
this is inconsistent with the static ansatz we exploit to gen- Koo(in)=rBp, Kyslouh=rpBy.
erate the asymptotic form of the metric. To resolve this in-
consistency we must reinterpret the original ansatz as a dddere, Bp and By, are given by
scription of a dynamical object. What has happened is that
the timelike Killing vector which characterizes a static ge- Bo=—Apt Bu=Ayt
ometry has become spacelike. The radial vector, however, b DDy PMTIIMIM
remains normal to the Killing vector. The cosmological na-wheret, () andty,(7) are the de Sitter and exterior “static”
ture of the exterior geometry will be described more fully in time variablesT, and T\, evaluated on the wall. The over-

Sec. V. o o o dots refer to derivatives with respect to proper time. We
The continuity of the lapse and its first derivative acrossrecall that[12]

the core boundary determines the equilibrium val(e$s)
and(1.4). We note that the maximum core size covered by a
static chart is given bHR=1. This limit obtains wheny
=3M p- We conclude that a static interior is possible well
into the regimen>M,,.

Now let us include a surface energy density on the core
boundary. In the thin wall approximation, we can exploit Bo—Bu=4mGor. (2.6
Gaussian normal coordinates adapted to the wall to expre
the stress tensor there in the form

2 . 2 .
Be=Ap+r2, By=An+r2

Now the (66) component of Eq(2.5) reads

Shis equation can be cast in the form

4=0d8(n)é%. 2.3 r2+u(r)=-1, 2.7

o is the constant surface energy density of the boundary. Th\évhere
parametem appearing in Eq(2.3) is the proper distance 5
normal to the world sheet of the wall. The metric induced on _ Fo 42,2
D ur)=—|— Her (2.8
the wall is given by

dSzZ _ d7'2+ r(T)ZdQZ, or, alternatlvely,

wherer is the proper time registered by an observer at fixed U(r)=— F_+ 2_ 2GM 8nG a2 2.9
6 and ¢ who moves with the wall. The problem reduces to o\ r? r 2 '
the determination of the trajectory=r (7). _
The origin of the surface energy density is the field gra-with
dients interpolating between the false vacuum interior and
the exterior. We approximate it: M p. 7? )
= = - — o+
F.(r) yp Sar + p r, p+=pt6mGo~-.
o~r,X (energy density differenge (2.10
~tu(p—77Irg), The linear term inF_. encodes completely the topology of

. . ) the scalar field.
wherer,, is the size of the monopole. The numerical results

of R_efs.[7,4] show thatr,, is proportional to 1#. The above 1. WALL MOTION IN MINKOWSKI SPACE
relation becomes
In the limit G—0, the Einstein equations should repro-
o3 duce the description of a global monopole in Minkowski
o=smn", (2.9 ; . g .
space. In this section, we examine a model of a monopole in
Minkowski space. This is a useful preliminary step before
The surface energy distributia@.3) introduces a discon- &{témpting to examine Eq2.7) fully. o _
tinuity in the spacetime metric at the wall. The Einstein L€t the core radius be. The energy density in the core is

H H 21p2
equations at the core boundary reduce to the fiikin-13 a constantp, and that in the exterior-7°/R". A surface
layer with energy density is located on the core boundary.

The total energy of a static configuration is then given by

wheres is a dimensionless constant.

Ka,(out) — K3,(in)= —4maG 8%, , (2.5

whereK,,(in) and K, ,(out) are, respectively, the extrinsic E

417
curvature of the wall embedded in de Sitter space and in the 3 pretamor®tamy (R =), @D
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where R* is a cutoff. It is clear that an equilibrium exists.
We minimize E with respect tor to obtain the stable equi-
librium core size:

7 2
+ L
p

o
r0=——+
P

(o

p

(3.2

The (subtracteylenergyE* =E— 47 7?R* is then given by

2

47 o?r
% 1+25 5 1+

3

L/

)

ESZMO 3

2
(3.3

We note thatM is manifestly negative. In the limi#—0,
we haver = 7/\p andE% = — (87/3) %/ \p. If we identify

E* with M, we reproduce the values obtained by Harari and_ 4,

Lousto which are independent 6.
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FIG. 1. Plot of U(r) vs r in Minkowski space with#n
p» M=—-2m,. The wall oscillates between a minimum at
rvin @nd a maximum at .. The physical domain oW is con-

More generally, let us examine the motion of the coretained within the intervalry,r,] over whichF is positive.
boundary. The classical action describing this motion is

given by

[ [dr)\? I
1- at +47p°(R*—r)|.

(3.9

4
SZJ dt ?pr3+4770'r2

The canonical conserved energy is given by a Legendr
transformation of the Lagrangian appearing in E4):

4

=?pr3+4770'r2\/1+ I"2—47T772r.

E* (3.5
The only change with respect to E®.3J) is that the bound-

ary term picks up kinetic energy,#orr2—4mar2y1+r2,
We can recast Eq3.5) in the form

F
2

V1+r2

(3.9

-

whereF is given by

Equation(3.6) implies thatF must be positive on any physi-
cal trajectory. This condition places a constraint on the ex
tent of the radial domain of the wall.

Whenr2<1, the motion is well described by the potential
appearing on the right-hand sid@HS) of Eq. (3.1). Clearly,
the equilibrium configuration has=r, given by Eq.(3.2)
with energyM given by Eq.(3.3). In general, we can cast
Eq. (3.6) in the form

r2+u(r)y=-1,
where

06350

(3.7)

F 2

U(r)y=-— (r—z) .
This is exactly the limitG—0 of Eq. (2.7 when E* is
identified with M. We will examine the solutions admitted
by this system with our eye on the analogy with the general
felativistic problem.

Let us first examinéM <O0.

We first determine wher€ is positive. We note that for
each negative value &l above some lower threshold .,
the cubic functionF has two positive roots;; andr,, say,
andF is positive only in the domaifr 1,r,]—physical mo-
tion is necessarily bounded. To determide, we observe
that whenM falls to M., the two roots coalesce with the
local maximum. Thug==0 andF’'=0 simultaneously. We

find that this occurs at=r .= 5/p and

(3.8

Below M., F is negative everywhere. Thereforgl=M,
places a lower bound on the mass spectrum.

It is now simple to construct the potentidlin the regime
M,<M<0. We note thar®U’=—2F(rF’—2F). U pos-
sesses two maxima coinciding with the rootsFoatr, and
. It possesses a single minimum given by the single posi-
tive root of the cubicyF'—2F.

On a physical trajectory) < —1. The static solution with
U(r)=—1 at its minimum determines the sharp lower
boundM, given by Eq.(3.3) on the mass. We note the§
<r.. It is then simple to see thail <M for all %. The
existence of the thresholll; places no constraint on the
spectrum of oscillating solutions.

For eachM <M <0, r will oscillate between two turning
points, r yin andryax, bounded within the intervdlr ,r,].
This solution will be stable. If initially the core is displaced
from equilibrium, it will oscillate about the equilibrium. In a

2-4
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physical monopole, we would expect the core to relaxgo cient condition. We have already observed in Sec. Il that

as the monopole radiates away its excess energy. noninflating solutions appear to exist wheye M —they
The potential (r) is plotted in Fig. 1 for a negative value certainly do if  is not too large in ther—0 limit. So »
of M. =M, is clearly not a sufficient condition. We will demon-

While both collapsing and expanding solutions appear testrate explicitly, however, that there is a critical valuerpf
exist in the region outside the intervial;,r,], F<0 there. above which all solutions inflate.
Such solutions are not consistent with the boundary condi- Whereasd= was positive in Minkowski space, its relevant
tions which correspond to a monopole. They correspond ingeneral relativistic extensions need not be: as demonstrated
stead to an unphysical inside-out monopole with an interioin Appendix B,F_ assumes negative values along physical
with energy density;?/R? and an exterior false vacuum. Itis trajectories when the core is larger than a de Sitter horizon;
simple to check thaf now appears in Eq3.6) with a minus  F, may be negative if the Barriola-Vilenkin geometry pos-
sign. sesses a horizon.

If M=0, F is positive in some finite domain containing  In this section, we will examine the solution of EQ.7).
the origin. This places a bound on the physical domain.of The determination of the physical spacetime which corre-
U increases monotonically over this domain. The core alsponds to these solutions, and whether they are physically
ways collapes in a finite proper timeg with r ~ (7o— 7). realizable, will require the evaluation of the signff and

To summarize, in Minkowski space we saw that the speck, . This will be deferred to the next section.
trum of physically realized values &l was bounded from It is convenient to introduce dimensionless variables. We
below by M,. For eachM,<M <0, there is a stable oscil- define
lating solution and such oscillating solutions exist for all
values of . If M=0, there is a bounded solution which

collapses. The only possible motion in Minkowski space is 7=Hr. m= VA/3 ﬂ D= - 4.2
bounded. ’ 87 M,’ P== 22 P :
IV. WALL MOTION Let 7= /M, and X =\/3s?. We then haveF . =H 2F.,

_ _ ) . where
In this section, we discuss the wall motion in general

relativity. As we will see, when gravity is turned on the
situation can be quite different. In addition to determining 1
the energy density in the interior and on the core boundary, f¢=§>\”z;}
7 also determines the angle deficit in the exterior.

We would expect the interior to inflate when the core

radius exceeds the de Sitter h0r|zon_rad|us. On dlmenspnqlhe potentiall is now parametrized by three dimensionless
grounds this occurs whep=M . Is this a necessary condi-

tion? parametersy and\ which characterize the physical theory,

If 7<M,, the deficit AQ<4s. Thus, if M=0, we and the(reduced gravitational massn:
would expect to reproduce, at least qualitatively, the behav-

, 7’::3(;]_2tx_1)-
4.2

P+ 3
m——z"+z
3

ior of a false vacuum bubble discussed|[iP]. However, £ \2 F\2 m2
while a false vacuum bubble withl >0 always collapses in U=— ( _‘) R i _77_’;,2_ (4.3
Minkowski space, when gravity is taken into account its in- z? z? z

terior may inflate for any value of the symmetry-breaking

scale without destroying the exterior and therefore withoulye i consider a theory with a fixed value &fand exam-

any violation of flat space intuition in that region. This is . the behavior a% is dialled f 0 1o infinit

because the inflation occurs behind the event horizon of thE'€ 1€ behavior ag 1S dialled from © to infinity. .
Let us first examine the global properties of the function

exterior Schwarzschild geometry. The inflating interior is A " th . tant ts in which th
connected by a wormhole behind this horizon. The even] * S We will se€, there are important respects in which the
unctional form of U differs from that of its Minkowski

horizon signals the eventual formation of a black hole. All S

false vacuum bubbles are singular.NF<0, unlike them  SPace counterpart. To begin with, we note thiat0. As z
>0 Schwarzschild geometry, the exterior geometry is glo-
bally static and there is no exterior horizon. One would not

expect to find inflating solutions, singular or otherwise. We m?2
will demonstrate explicitly that one does not. U~-— e (4.9
When »>M,, AQ>47. If, in addition, M<O0, the

causal roles oR and Ty, in Eq. (1.1) are interchanged be- .

yond some finite value oR. This value separates a static '

region from an expanding cosmological one. This expanding

region can support an inflating interior: can grow large

without doing so at the expense of the monopole exterior. 2We note thatu< —z?, with equality at points wherg_=0, if
While »=M, is a necessary condition, it is not a suffi- they exist.

ndependent 0o6G. As z—x,2
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U lie with respect to its turning points witd=—1. Let us

2. (4.5 locate the mass values at which critical points coincide with

turning points.

i
3

) o The two equation®) =—1 andU’=0 can be reduced to
From its asymptotics, it is clear that always possesses at 3 form analogous to Eq$4.7) and (4.9):

least one positive maximum. Here we would like to deter-
mine the physical conditions under which it may possess

U,.\,_

additional positive critical points. Specifically, when does it z L,
possess a well? Recall that in Minkowski space this occurs m=3,2-5| 1-{2- 3P- % (4.9
whenM <M <0, whereM, is defined by Eq(3.8).3
In general, at a critical point d, U'=0 or where
X2 I I
Tn +m-— %23 z+2m+ %23) =2°. (4.6 (22—1)(p_22—1)%+ ~iz2(3z2—2)2=0. (4.10
A 72

We find that for eachy, there exists a critical negative mass The solutions are traced on the parameter space in Fig. 2
m. below which Eq.(4.6) possesses a single positive solu-where they are labellehy, m, , andmy, .

tion corresponding to a single maximum 1dr For negative Let us describe these solutions in greater detail.

m>m,, the equation possesses three positive solutons, If m;<m<0, we know that there are three critical points
Zp, and z, : two maximaz_ (left) and z, (right), and a and the potential possesses a well. Under what conditions
minimumz, lying between them. Am is lowered tom;, the  will a stable oscillating solution exist in this well? In general,
right-hand maximum coalesces with the minimum and theywe note that the left-hand maximum is always the absolute
annihilate. Let this value be.. To determinem., we note  maximum:
that whenm=m,, in addition toU’=0, we also have)”

=0 at this point. We can express these two conditions in the
following form: U(z-)>U(z,). (4.17

A stable oscillating solution will therefore exist if the motion

is bounded by the right-hand maximum,
me=z ~ 22(P+Zc_3)' (4.7 Y J

U(z,)>—1, (4.12
where
and the minimum lies within the physically accessible do-
~2 QT2 T2\ B g T2.6_ o2 _T2\4 main of z:
p5(8p% +p2)zi—18p_p 22— 3(ps —p2)Z
—18p_z2—9=0. (4.9 U(zg)<—1. 4.13

There is a unique positive solution to E@.8) for each Equation(4.13 is saturated alongn, in Fig. 2. The mass
specification ofy. Equation(4.7) then determinesn.. This  spectrum of stable oscillations is bounded from belowriy

solution is given by the line labelleth, in the parameter There is a single stationary solution of sizg

space §,m) in Fig. 2. Clearlym,<m<O0 represents a nec-  If <1, Eq.(4.12 is always satisfied. =1, however,
essary condition for a stable oscillating solution. Eq. (4.12 is saturated alongn, . Oscillating solutions of

We have now determined how the number of critical grpjtrarily small negative mass exist when<1 but do not

points of the potential depends om when 7>1. If <1, the mass spectrum is bounded from

A necessary condition for classical motion is thats b bym=0- if B=1. th is bounded f
—1. For a given set of parameters, this condition will parti-a ove bym=0; i #=1, the spectrum is bounded from
above bym, .

tion the domain olU into allowed(or physical and forbid- . . .
den subdomains. This partition, as well as the qualitative 1S behavior can be accountec:j f%r analytically. When
nature of the motion in the disjoint physical domains, is com-M— —0. the left maximum agz_ and the minimum ag,

pletely determined once we know where the critical points ofd€9enerate ta=0 with U(z_) =0 andU(zp) — —. In this
limit, Eq. (4.6) determines the position of the right-hand

maximumz, :

3In analogy with the Minkowski space treatment, it is clear that a

sufficient condition of it possessing twlor more maxima is that 1 72
F_ possess two zeros. There is clearly tli@nleast one minimum lim Zi =— +
between them. This is not, however, a necessary condition. m——0 41+ =\ 772;)2,
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m 0-4 T T T

! 6) \my ) ]

n
VRN~
o
m, m, my m<0
=H

o1 (b.2) (b.3)
Me P my, m>0

(b.4) (b.5) (b.6)

FIG. 2. (@) The parametric space of the modei, vs 7 with A=3.33 (\=0.1, s=0.1). In the regionm,<m<0, the potentialU
possesses two maxinma , z, , and a minimung, between them. Alongn,, U=—1 atz,; alongm,, U=—1 atz, . In the regionan
<m, andm>0, U has a single maximura,, . U=—1 atz=z, alongmy . mg andm, terminate at the poinP which lies onm,. The
boundariesm,, mg, m, , my, andm=0 partition the parameter space into seven regions with qualitatively different potentials. The
potentials on these boundaries are plotted in Fit).2b.1) m, (7=0.5, m=—0.0896),(b.2 m, (7=1.15m=—2.006), (.3 my,
m<0 (7=0.5, m=-0.5136), and(b.4 m. (7=1.57, m=—0.2926).(b.5 At P (7=7.=1.235 m=—-0.2677), and(b.6) my, m
>0 (5=0.5,m=2.9212).

The condition(4.12) then determines the limig<1. Thisis  terminate at the common poift where they coincide with

independent ok. So for infinitesimally small and negative M. This end point defines a critical value gf 7., above

mass, oscillations exist only whep<1. which there do not exist any stable oscillating solutions.
Both my, and m, decrease monotonically witly. They ~ Whereas in Minkowski space the boundany possesses no

063502-7



INYONG CHO AND JEMAL GUVEN PHYSICAL REVIEW D58 063502

Uo . T 0 .
N /\ E=-1 [\/_\
| V -1
E0 a5 1 15 E(J 05 1 15
z=Hr
(1) (2)
, \ VAN
E0 a5 1 15 E(J 05 1 15
3) 4)
0 05 1 15 0 05 1 15 o o5 1 15 2 25 3

(5) (6) )

FIG. 3. Plots of the potential in each of the seven regions of Figl)2(%=0.5, m=—0.07), (2) (z=0.5,m=-0.1), 3) (=1.5,
m=-0.2), (@) (=0.5,m=-0.4), (5) (=05, m=-1), (6) (=0.5, m=0.2), and(7) (=1.5, m=0.2). The potential in regiofl)
possesses oscillating, collapsing, and expanding domains. In réd)iche potential has a well but oscillations are not allowed classically.
In region (3), the right maximum of the potential does not contain the motion. In redibnand (6), the potential has a single maximum
separating collapsing and expanding domains. In regibnand(7), the single maximum is accessible. The motion is monotonic.

physical significance, here it plays a role in the bifurcation inbecausdJ(z_)>—1 in this regime.
parameter space a:’;h, We note that in the limi—0, Both whenm<m; andm>0, there is a single maximum

n.— /3 consistent with the static limit of the de Sitter inte- 2w Of U. The conditionU(zy,) = —1 identifies a masay .

rior discussed in Sec. II. This, of course, is a highly singularSe€€ Fig. 2. Ifm<0 (m>0), motion is monotonic whem
limit. <my (m>my). m=m,, therefore identifies the boundary

There is no solution analogous to, for z_. This is in parameter space separating regimes of monotonic and
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nonmonotonic motion. We note that along the positive v
branch,my— as7—0. i .

We summarize as follows. T\ N

The boundariesn., mg, m,, my, andm=0 partition 1t BN (.. D .
the parameter space into seven regions labdllgd(7) in
Flg 2. - 0 c

In the parametric regionl) bounded bym=m,;, m T
=m, , andm=_0 the potential possesses oscillating, collaps- I
ing, and expanding domains. This potential is plotted in Fig.
3.

In regions (2)—(4), only collapsing and expanding do-
mains exist. In regioni2), while the potential does possess a
well, its mimimum is inaccessible classically. See Fi)3
There are no oscillatory solutions. In regi(8), the potential
again possesses a well. However, the right maximum no - - ' L - . -
longer provides a barrier containing the motion in the well. - 0 1 u
Motion in the well is unstable towards expansion. See Fig. FiG. 4. Trace of the wall trajectories on a Kruskal-Szekeres
3(3). In region(4), the potential possesses a single classicallyﬁiagram fory>1. The physical exterior lies in regidil) and(Ill ).
inaccessible maximurfsee Fig. 8)] which separates col- - an identical physically inaccessable copy is provided by the re-

lapsing from expanding domains. gions (1) and (IV). The oscillating trajectory® [region (1)] lies
In region (5), the single maximum of the potential is ac- within the static regior{lll). The expanding bounce trajectoBy;

cessible. The wall trajectory is monotonic. See Figh)3 also originates there but crosses the null surface-v to enter
For m>0, the potentials in region®) and(7) are quali- region (I1), changing its angular direction at The trajectory lies

tatively identical to those in regiord) and(5), respectively. ~ completely inside the physical region. The collapsing trajectory

. . ~ Lo lies within the unphysical regior(l). The remaining bounces
Se? Flg._36) ar.]d .Flg' $7)' IT 7<1, the motion in these B(1y,(2).(ay @and the monotonically expandiny! trajectories origi-
regimes is qualitatively identical to that of the false vacuum, 4 in the unphysical region but cross the horizon to eiter
bubbles discussed in R4fL2].

In the next section, we will construct the spacetime which, letel | to the Minkowski del di
corresponds to each of these trajectories. IS compléetely analogous 1o the Vinkowski space modet dis-

The above analysis simplifies considerably if we assuméFussed in Sec. 1II.

~ ~ ~ ~ _ _ _~2 .

p_=0 for all » and\. As we will demonstrate in Appendix If d’_7>1' the suria;:d?)—er— iGM/(lR_” ) |s|fngll. The

A, the overall picture is qualitatively identical to the coor .|r_1ate systent '.) reaxs down ar=ry. I R=ry,
the Killing vectordr  is timelike, and the spacetime is static;

=const case.
if R>ry, T, is spacelike. The spacetime is dynamical in
this region. At large values &, the spacetime metric can be
V. EMBEDDING THE WALL TRAJECTORIES approximated by
IN SPACETIME
In this section, we trace the wall trajectory in spacetime. _dR?
If <1, the exterior metri¢1.1) does not possess a ho- ds2=.7.]2 1 +(7?—1)d T3, + R?%dQ2. (5.1)

rizon. The singularity aR=0 is a naked one. However, if
we truncate the exterior spacetime at some finite valu@ of
and replace it by a nonsingular patch of de Sitter space, th
s?ngularm_/ is removeq. The p.hysical spacetime_is free Ofasymptotic geometry is &2+1)-dimensional Friedman-
singularities. The static coordinate systeR,Ty) is 9l0-  Rgpertson-walker universe expanding linearly with tiRe
bally valid in the exteriorT is the asymptotic time antl; ~ The asymptotic geometry can be represented locally by a
must be positive along physical trajectories. Just as in th@pherical cylinderS?x R. This is a highly anisotropic cos-
Minkowski space analysis, the sign gy is the sign offF, . mology.

So F, must be positive everywhere along trajectories. In  We can introduce Kruskal-Szekeres coordinatasv)
Appendix B, we show thafF , is positive along the oscilla- that cover the complete exterior spacetime. The maximal ex-
tory solution and negative along the others. The only physitension of this coordinate system is the spacetime shown in
cal solutions are oscillatory. It is simple to check taat1 Fig. 4. This spacetime is represented by a subset of a plane,
everywhere along these trajectories. The interior is comito each point of which corresponds a two-sphere of raglius
pletely covered by a static patch of de Sitter space. It thereThis plane divides naturally into four quadrants. The coordi-
fore does not inflate. A remote observer will eventually seenates are defined as follows in terms of the “static” coordi-
this stable oscillating motion of the wall. The remaining tra- nates in each of these quadrants: in quadrants | arfdpgper
jectories correspond to unphysical inside-out solutions. Thisign for quadrant)]

s discussed in[14], each constantT,, slice of the

063502-9



INYONG CHO AND JEMAL GUVEN PHYSICAL REVIEW D58 063502

FIG. 5. Trace of the wall trajectories on a Gibbons-Hawking  FIG. 6. Trace of the wall trajectories on a Gibbons-Hawking

diagram for < \/f The oscillating trajecton® lies completely ~ diagram forz> \/i The expanding trajectorieff s and By, lie
within (Ill). The expanding trajectori3 s, lies completely within  completely within(ll) and (lll). The collapsing type’ trajectory
(1) and (111). It changes its angular direction withiil). The col- and expandingM trajectory originate outside of the horizoM,
lapsing typeC trajectory and both expandingi z) ) and M however, crosses the horizon and then changes its angular direction
trajectories originate outside of the horizai.and M, however, in (Il). B3 4y and M move asymptotically to the right.
cross the horizon and ent@t). By (2,(3),(4y and M move asymp-
totically to the left. two naked singularities given by the timelike hyperbal&s
—v?=1.Ty-constant lines are straight lines passing through
R 1/2 R
u==|1-—| expg5;—
( rH) F( 2ry

v=*|1——| expg=—|sinh—
My 2ry ty

Ty the origin.
COS"( t_) One way to describe the global geometry of this space-
! time is to consider a foliation by constanmthypersurfaces.
The spacetime is symmetric with respect to time reversal
——v. The hypersurface =0 is momentarily static. The
' topology of this hypersurface i8° with singular poles. The
equatorial radius igy. As v is increased, the equatorial

and in quadrants Il and IVupper sign for quadrant)i| radius increases monotonically while the geodesic distance
between the poles increases more slowly. While the singu-
2 larities of the maximally extended geometry are naked, they
R R\ . (Twm : : ;
u=+|—-—1| exp=—/|sinh —|, do not appear on the truncation of this geometry which cor-
MH 2ry t responds to the physical exterior region unless the core origi-

nates at or collapses tc=0.
( R )1/2 ;{ R ) k(TM) The physical exterior region surrounding a global mono-
cos ,

v==*

——1] ex pole is clearly very different from the global geometry we
"H have just described. Saket al. [4] have described numeri-
cally the evolution of an inflating global monopole in a
spacetime which is initially flat. The initial core radius in
their model lies outside the monopole horizon. Let us sup-
. R R pose that we place the monopole on the left ofuke plane.
uT—v"= 1_E ex , The maximal extension of such a slice might be approxi-
mated by the flat spatial hypersurfakein Fig. 4. It coin-
cides with the hypersurface=0 at the point ¢1,0),
v :tan"(T_M) 1) crosses the horizan= — u at some finite positive value of,

1 R and tends asymptotically to=u. The initial data on the
slice will not generally be stationary. The future of this slice
lies entirely within the two quadrantdl) and (lll). The

E=tan|‘(-|-—'v') (in 11, 1IV) (5.2 asymptotic region described by E¢b.1) lies completely
v ty ' ' ' within region(Il). The remaining two quadrants) and(1V)
are inaccessible for the boundary conditions we are consid-
The spacetime is defined by the regisf-v2<1 on theu-  ering. This is analogous to the description of stellar collapse,
v plane.R-constant lines are hyperbolas which degeneratevhere half of the maximally extended Schwarzschild geom-
into straight linesy = = u on the horizonkR=r . There are etry gets discarded.

2ry

ty

wheret,=r%/GM. We have
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Now let us examine the interior de Sitter space. To trace All collapsing trajectories, labelledin Fig. 4, lie entirely
the trajectory in de Sitter space it is convenient to describe iwithin the unphysical regiofl). They cannot be realized in
by Gibbons-Hawking coordinatesJ(V). These coordinates an asymptotically cosmological geometry.
have been described elsewhere in detail. We refer the reader As » increases the horizon scale shrinks to zefp:~0,
to [12] for further details. Briefly, with respect to these co- Where the exterior geometry is singular. The external metric
ordinates, de Sitter space is represented by the rdgidn  (1.1) we have been exploiting, based on Barriola and Vilen-
—V2|<1 on theU-V plane, each point of which represents aklnjs asymptotic exact solution, is not expected to proy|de a
two-sphere of radiug, related toU andV by U?—V2=(1 valid approximation under these circumstances. In particular,

- : . . in this limit, the description of the regioR<r, breaks
HR)/(1+HR). See Fig. 5. The ‘?'e Sitter horizon of the down. However, we also found that oscillating solutions do
north [south pole (—1,0) [(1,0] is represented by

! not exist for largen; the expanding solution of typB s is

=U [V=-U]. The center of the monopole is located on expected to be formed in regigh) with an initial size much

the left at the north pole. larger tharr,. The analysis of trajectories remains valid.
The flat sliceX in the maximal extension of the exterior ~ The expanding typeS, motion is unboundedr— .

geometry will be truncated at its intersection with the rel-However, outside the horizon, the exterior spacetime is itself

evant wall trajectory. It can, however, be extended into theexpanding. After an initial invasive peridtb T in Fig. 4) the

interior. Indeed, the standard presentation of de Sitter spadXpansion of the wall is not at the expense of the ambient

is as a spatially flat Friedman-Robertson-Walker universe€Xterior. Al expanding trajectories move eventually to the
This slice is labelled’ in Fig. 5.3’ coincides with the left. Therefore, a remote observer in the exterior is safe from

hypersurface/=0 at the point (1,0), crosses the horizon being swallowed by the expansion of the monopole. This

V= —U at finit i lue &f and tend observer will, however, eventually see all trajectories.
— — U atsomefinite positive value of, and tends asymp- 1, rigs. 5 and 6, we plot the corresponding embedding of

totically to V=U. The future (_)fE’ lies entirely_within the possible wall trajectories in de Sitter space.
two quadrantgll) and (lll). Initial data are defined on the Oscillating trajectorie), both for7721 and for77<1,

union of the interior and exterior flat slices. are contained completely within regighl ) on the Gibbons-
The role played by the two fugacitig8y and By was  Hawking plane. The wall does not cross the horizon and the
described if12] in the context of a Schwarzschild exterior. interior does not inflate.
They demonstrated th@, (8),) was proportional to minus Along the infinite trajectories of typ8 and M, however,
the angular velocity about the origin on a Gibbons-Hawkingr must cross the de Sitter horizon at some point and enter
(Krustal-Szekergsspacetime diagram for the interiéexte-  region (Il). The interior spacetime necessarily inflates. The
rior). In Appendix B, we show that the sign @ (Bu) qualitative nature gf these inflating solutions will (iepgnd on
coincides with the sign ofF, (F_). These signs therefore the magnitude ofy. There is a critical value ofp, 7p
determine uniquely the routing of trajectories about the ori-= \/i below which all inflating trajectories move asymptoti-
gins of Figs. 4 and 5. The relevant interior and exteriorcally to the left, and above which they all move to the right.
spacetimes can then be constructed with this information. Compare Fig. 5 with Fig. 6. Once any constagthypersur-
Let us first discuss the trajectories of the wall in the ex-face is breached, it cannot be recrossed. A foliation of de
terior. Sitter space by constant hypersurfaces reveals that the
All oscillating trajectories lie entirely within regiofill) ~ SPherically symmetric inflating region in the former case

on the Krustral-Szekeres plane. Their trajectories are labellet7< 7p) is contained completely in the northern hemisphere

O in Fig. 4. of de Sitter space; in the lattep& 77p) it contains the equa-
We describe bounces with the stationary initial conditiontor. The volume of the inflating region increases with in-
r=0. creasedy.

There are two qualitatively distinct expanding bounce tra- Technically, at the critical value;=7p, p_=0. If 7

jectories. The trajectory, labellels) in Fig. 4 [which cor- =7, thens_<0. In Appendix B, we demonstrate explic-
responds to parameters lying within region (3) in Fid. 2 itly how the sign ofF_ and hence the routing of trajectories

also originates in regiofill) though this region need not be _ .o ~tacted. <70, By originates in(lll) and changes

part of the physical spacetime. If it is, the exterior POSSeSSeFi action outside the de Sitter horizoBy) (2 4y and M

a horizon. The bounce may also then have a stationary po"btriginate in(1). They do not change direction
within the physical region. It must, however, always cross o .B iill originates in (). H ' it
n>1p, B still originates in(lll). However, it no

the horizon and enter regidl). Its motion changes direc- S ; . .
tion at some point outside the horizon which we can set tdonger changes direction outside the de Sitter horizon. We

occur atTy =0 without loss of generality(See Appendix hote thatyp> 7. so that parameter region$) and (2) are

B.) The remaining expanding bounce trajectors) ) sy  NOt PresentB,) now originates in(lil). It does not change
[corresponding to parameters in regiqds, (2), and (4) in direction. M still originates in(l). However, it now changes
Fig. 2], as well as all monotonically expanding trajectoriesdirection in(ll).

M [region(5)], originate in the unphysical regia). They In general, the initial region of de Sitter space bounded by
do not possess any physically accessible stationary point&z) may be smaller than the horizon. That bounded3py
However, they cross the horizon and enter the physical remay also be whem> 7 . B(1),(2y and M, however, always
gion (Il). There is no horizon in the exterior. contain a horizon.
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VI. CONCLUSIONS There are several open questions related to this work that
. merit further examination.
We have presented a simple model of a global monopole. ~ . ) ~ ~
Thi del di hat = »/M-<1. th i< al For eachy in the interval X < 7., we saw that a stable
IS model pre |ct_s t at. i7=7 P<_ o ere I1s always a oscillating solution coexists with an expanding solution of
stable static solution with a negative gravitational massihe same mass in some strictly negative band of values of
There is no inflation. Ify>1, but below some critical value, |t would appear that all noninflating monopoles are therefore

there exist classically stabl_e analogu_es of these static MONQzatastable withy>1: there is the possibility of its tunneling
poles. However, the exterior spacetime is no longer statiGyt, an inflating configuration. In the semiclassical approxi-
For all »>1, there exist nonsingular inflating monopoles mation tunneling will be described by an instanton which
with strictly negative gravitational mass. interpolates between the oscillating and inflating solutions
These inflating solutions differ from the false vacuum(13].
bubble solutions examined ii2] in the important respect A static monopole minimizes the energy within the topo-
that the spacetime is nonsingular. logical class to which it belongs. We would expect it to be
The monopole interior inflates when the core radius exstable against perturbations. It is not so clear what to expect
ceeds the de Sitter horizon radius. Once the wall radius in an inflating monopole. This question can be addressed
crosses the horizon it must continue to expand. There are ngithin the context of the present model by examining the
inflating solutions with constant stability of the exterior geometry with respect to perturba-
In a false vacuum bubble witll >0, the inflating interior  tions. Formally this problem is almost identical to the analy-
does not destroy the exterior because it occurs behind thsis of perturbations about a Schwarzschild geometry. How-
event horizon of the exterior Schwarzschild geometry. In thesver, the exterior is now cosmological, not static, and the
present case witM <0, the picture is very different. There boundary conditions involved are very different.
are no horizons whem< 1. But there is no inflation, and so ~ We have only considered global monopoles. It should be
there is no difficulty reconciling physics in the interior with straightforward to examine gauge monopoles, as well as cos-
that in the exterior. However, whép>1 there are inflating ™Mic strings and domain walls, in this approximatidrs].
monopoles but no wormhole and no event horizon. To un-
derstand what is happening, we found it useful to exploit a ACKNOWLEDGMENTS
Kruskal-Szekeres diagram, Fig. 4, representing the global
spacetime structure of the exterior. There is a cosmologicaelx
horizonv = —u beyond which the spacetime to the future of
any spacelike asymptotically flat slice is dynamical. In this
region the roles o andR get interchanged. The Schwarzs-

child parametef is no longer the proper time Of_ an i_nertial to the National Science Foundation for partial support. J.G.
observer aR=c. Ity 1S a spatial Killing vector in this re- gratefully acknowledges the hospitality of the Institute of
gion. R is time. AsR—, the geometry can be represented Cosmology at Tufts University, support from CONACyT
by a universe expanding linearly with tink along two di-  Grant 211085-5-0118PE, and UNAM.

rections. Because of this expansion, the unlimited expansion

of the core radius is not at the expense of the exterior space- AppeNDIX A: ANALYSIS OF THE WALL MOTION

This approach to global monopoles was suggested by Al-
ander Vilenkin and we have benefitted greatly from con-
versations with him. We also thank Daniel Sudarsky for
helpful discussions and Nobuyuki Sakai for several useful
comments, in particular, for pointing o[®]. I.C. is grateful

time. If % is sufficiently Iar_ge, the monopole ho_rizon is smalll IN A SIMPLIEIED LIMIT
and the core boundary will always be located in the dynami-
cal region. It inflates. In this section, we analyze the wall motion in the analyti-

We emphasize that we have not solved the field equationgg|ly tractable special case given py =0.
Considering, however, the simplifying assumptions we have We note that the reduced energy density differepce
made to model the system, the critical value we find,  defined by Eq(4.2) is bounded from below by the negative
~1.235 (7c~0.29m,), agrees well with the valuen. 416 —3X1, In this regime, the gravitational potential is

~0.33m, determined numerically by Sakat al. [4]. In ad- : . ~
dition, we note that with a flattes® potential, using the strong. It has no Minkowski space analogpe. diverges to

numerical technique adapted[ih,14], we obtain the numeri- Plus infinity as»—0. This is the Minkowski limit.p_ van-
cal valuen,~0.265n, which is closer to our critical value. ishes whery= \/f Remarkably, the potential simplifies on
The flatter the potential, the better the thin wall approxima-this subset of parameter space deep in the nonperturbative
tion is expected to be. These agreements make us confidegigime. Wherp_ =0,

that the thin wall approximation we have exploited does not

introduce spurious solutions not displayed by the field

thepry. The t_hin wall approximation, of course, will not bg j_-_zl%z(erz) (A1)
uniformly valid over the complete range of parameters dis- 2

cussed in this paper. In addition, it is expected to break down _

when the monopole radius is very small. However, no cosis linear inz with slope 7%2. The necessary condition for
mologically interesting solutions have been found in this re<lassical motion,U<-1, now assumes the particularly
gime. simple form
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FIG. 7. (a) Plots of|F_| vs z and G, vs z with fixed 7=0.9.
With a small negative magé m= —0.07), there are four intersec-
tions corresponding to bouncing points in the potential.r\sle-
creases, oscillation disapedis m=—0.3) and then the wall tra-
jectory becomes monotonidll: m=-1.85) as in the case of
positive mass(IV: m=0.4). (b) Parameter space witp_=0.
[Compare Fig. @).] The only qualitative divergence from the ge-
neric behavior is tham,, diverges to— as%—0.

| F-|=Gs(2), (A2)

where
Gi(2)=2%(1-2)""
if z<1 and zero otherwise. We note that

, . z(2-3z2% ~ 2-97°+67*
Gs(2)= (1-72)v2’ 9s(2)= (1-722)32
The functionG has a single maximum at= /2/3, an inflec-

tion point atz=(9—/33)/12 and vanishes at=0 and
z=1. The inequality(A2) is very simply illustrated graphi-

PHYSICAL REVIEW D58 063502

cally. There are three possibilities. Two intersections of the
graphs|F_| and G, indicate the existence of two bounce
motions described in the text, one of which collapses and the
other expands. Four intersectiofthree with 7~ and one
with — F_) indicate, in addition, the existence of an oscil-
lating solution lying in the domain between the two bounces.
Zero intersection indicates a monotonic solution. We illus-
trate all three possibilities in Fig. 7.

With 77 fixed, let us dialm beginning withm=0 and
decreasing through negative values.

Suppose tham is small and negative. Only two of the
possibilities described above are possible: either there are
two or there are four interections gF_| andGs. Now when
m=0, —F_ can intersecfs only atz=0. F_ also intersects
Gs at z=0. It will reintersectg, only if its slope lies below
some critical value. We find

2
<0.

~2

772+

There exist two real solutions if and only if the discriminant

of the quadratic irg? is positive, orp=<1. This reproduces
the criterion for the existence of a zero mass oscillating so-
lution obtained earlier in our general discussion.

Let 7> 1. Itis clear that if, in additiony lies above some

critical value7,, F_ will never intersecti; more than once.
This critical value occurs when the slope B8f exceeds the

maximum slope ofj,. Thus72=2G.(z=z;), where

1 9-33
Gi(z=2)=7(~1+\83 \[ o=

which gives7.~1.203.

For all 7 within the range %<7, there will exist
some bandimy,m, ] within which F_ will intersectg, three
times. These values are determined by the real solutions of

F_ =Gs, F.=G., (A3)

satisfying, respectivelyg;<0 andG.>0. These equations
(A3) reduce to Eqs(4.10 and (4.9 on setting§_=0. The
solution is represented by the linag) andm, on the-m
plane in Fig. 7. The interpretation is identical to that for the
generic case.

A simple bound can be placed om, by inspection. Let
the position of intersection of- #_ and Gg be z,, whenm
=my . We havemy = —2zy—2G(z,) 7 2. An upper bound
is obtained by approximating the position of intersection by
z=1, my<-1. A lower bound is obtained by replacing
G<(zy) by the maximum ofjs which is 2y/3. Thus

my=-1-——7z"2. (A4)
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The one qualitative difference with the generic case is that 15+ \/§3( 1+ 33\ Y4

my— — as 7—0 along its negative branch. This diver- m(n)= 28 | 12 7,

gence can be justified as follows: gf. =0, the limit —0 _

implies thats—o. A large value ofs corresponds to a large which is linear in% with negative slope and independent of
energy density on the surface compared to that in the interidlewton’s constanG.

—a situation which is never realized in a monopole.
Finally, we can determine the functional formm,

APPENDIX B: ROUTING OF THE WALL TRAJECTORIES
ON KRUSKAL-SZEKERES AND GIBBONS-HAWKING

=m.(7) exactly. Settingp_=0, Eq.(4.8) implies

1+33% 72|
48 4

2=

192

Equation(4.7) then determines

1+/33

1/4

n.

DIAGRAMS

Let us rewrite Eq(4.3) as

1
Z2=—(F% = Gup),

0.0 G ff 0.357
0.025] 0.3
0.25]

0.02]
0.2

0.015/
0.15]

0.04]
0.1
0.005/ o.ns]
0 0.2 0.4 0.6 0a 1 0

z
(@ (b)
0.257 0 .6
2
.7: + gm s j: 2
0.2 - *
0.4
0.15 69\4

0.3

0.1
0.2

0.054
0.1

0 0.z 0.4 0.6 0.8 ] 0.4 0.6 n.a
z z
(c) (d)

FIG. 8. ]—‘i vs z and Gy, vs z for 77<1 in the four regions of parameter spa¢®), (2), (4), and (5) (see Fig. 2 (a) region (1) (77
=0.9, m=-0.16), (b) (2) (=0.9, m=-0.2), (c) (4) (=0.5 m=-0.4), and(d) (5) (=0.5,m=—1). F, is positive in the central
physical domain oﬁ’-‘i in (a) and (b) while it is negative in the other two. IntersectionsBt and G, indicate the turning points of the

potential. In(a), the last intersection on the right top is not shown.
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2
0.07 0.4 f+
F

n.os

0.04] 0.08 GM
0.03
g_‘M 0.04]
0.02
0.02

" 02 04 0 08 1 12 1\4

(a) (b)

0.1 .7:+2 5

0.07
0.08 - R ff
0.05
0.04] 0.08 3
0.03 oal 2
G

0.02

0.02 1
0.09
0 0 0z 04 06 03]1 12 0 05 1 21?5 z 25

4
0.0
(c) (d) (e)

FIG. 9. 72 and Gy, vs z for 7>1 in the five regiong1)—(5) of Fig. 2: (a) region (1) (=1.1, m=-0.21), (b) (2) (=1.1, m=
—-0.25), (¢) (3) (3=1.5,m=-0.27),(d) (4) (p=1.5,m=-0.5), and(e) (5) (3=1.5, m=—1.2). F, changes sign on the expanding
domain in(c). Gy vanishes az=0 and at the exterior horizon.

where ﬁM:AM;[M
_ B _ 8G*M?% 1 1-87G7n* | . .
Gu=2[(1=7)z-m7?], Go=2%1-22), “1-8G2)7 1N T T2em (W)

This is independent of the quadrant in question. The change
of the polar angleédy, =tan (v/u) on the Kruskal-Szekeres
plane is

and .. are given by Eq(4.2). Classical motion of the wall

is allowed only in domains wher&2 >gG,, or, equivalently,

F2>Gp . Points whereF% =Gy p, if they exist, mark the

turning points of the motion. .
In Sec. V we claimed that the sign @f, and F_ deter- PR NE

mines the routing of the wall trajectory on the Kruskal- M u? M

Szekeres and Gibbons-Hawking diagrams, respectively. To .

show this(in the former casg we note that Eqs2.6)—(2.9 ThereforeBy,~ — 6. The sign of 7, determines the routing

relate . to the fugacityBy : F. =228y . We exploit the  of the trajectory about the origin (0,0). Positie. corre-

definition of 8y, and Eq.(5.2) to give sponds to clockwise motion.
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FIG. 10. 72 andGp vsz for 7< X (a) region(1) (3=0.9,m=—0.15),(b) (2) (3=0.9,m=—0.2),(c) (3) (»=1.5,m=—0.27),(d-4)
(4) (3=0.5,m=—0.4), and(d-5) (5) (=0.5,m=—1). F_ is positive in the central physical domain and negative in the others),Iithe
right part of 72 is not shown.

In de Sitter space, we get horizon in the exterior. As we argued in Sec. V the only
physically acceptable values gf, are positive.
In (1), Gy intersectsF2 at four points. There are three
Bo=—Aptp=— i(1+ Hr)2(UV—UV)~— 8, disjoint domains where classical motion is allowed. From the
H left to the right, they correspond to collapsing, oscillating,
and expanding motion. The sign d¢f, is positive on the
wheredp=tan }(V/U) andF_=27%Bp . As before, the sign oscillating domain and negative in the others.
of F_ determines the routing of the trajectory on the In (2), gM>]-‘i in the central region, indicating that the
Gibbons-Hawking diagram. PositivE_ , as forF, , implies  minimum of the potential well is inaccessible—there are no

clockwise motion. classically allowed oscillations. HoweveF,, is negative on
If 7<1, there are four distinct regimes in parameter spacéhe two accessible domains. _ o
we need to analyze, labeléd), (2), (4), and(5) in Fig. 2. In (4), Gy intersectsF; ; in (5), it does not(motion is

We plot both 7 and Gy vs z in Fig. 8 for each of these monotonig. 7, is negative everywhere in both cases.
cases in turng,, is positive everywhere because there is no If >1, G,=0 whenR=r. Whereas Fig. 9 is superfi-
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0.5 In (2) and (4), the collapsing and expanding trajectories
are located as iif1) above. In(5), the monotonic trajectory
originates ar =0 in region(l), crosses the horizon, and en-
ters(ll) exactly like the expanding trajectories () and(4).
All intersections of 72 with Gy, lie within the horizonr
Fl® <ry . Stationary points necessarily lie in the static region.
In the remaining regimé€3), there is an additional feature
we have not encountered so far. In the expanding domain,
F. changes sign from positive to negative beyond the hori-
zon. This means that the trajectofiabelled B3)) must
change its angular course at some point on the Kruskal-
Szekeres plane. Without loss of generality we can always set
this value toTy,=0. This trajectory evolves clockwise prior
0 o2 o4 oe o= 1 12 " 7'a to this point and counterclockwise thereafter. See Fig. 4.
= Now let us turn inwards. In contrast t6, , the sign of

FIG. 11. 7% andGp vs z for 7> X in region(3) (=2, m the leading term-p_z3 appearing inF_ does depend on the
=-0.2),(4 (=2, m=-0.5), and(5) (=2, m=-1.2). F_is  magnitude ofy.
positive in the domain of inc_reasim&%. In region(5), F_ changes If p_>0 (< \/T), the functional form ofF_ is quali-
sign in the expanding domain. tatively identical to that ofF, for 7>1 and the location of
cially identical to Fig. 8 for the regimed), (2), (4), and(5), trajectories on the Glbbons—Hawkmg plane is the same as
the physical interpretation is very different because of thdhat for the Kruskal-Szekeres plafféig. 10.
existence of the horizon. If p_.<0 (9> \/i), however, 7> intersectsyp twice in

In (1), F, is positive on the oscillating domain. This lo- regions(3) and(4) (Fig. 11). Unlike the previous caser_
cates the oscillating trajectory ifill) and not in(l). 7, is >0 everywhere along the expandiifljs trajectories. The
negative in the remaining domains. The collapsing trajectoryolar angle is monotonic. The stationary point 8, has
necessarily lies iffl). The expanding solution has its station- moved from(l) into (Il ). See Fig. 6F_, on the other hand,
ary point in (I), crosses the horizon, and entdik). See now changes sign in the domai» 1 alongMs,. The cor-
Fig. 4. responding trajectories are traced on Fig. 6.
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